Skip to main content

Advertisement

Log in

Toxic effect of environmentally relevant concentration of silver nanoparticles on environmentally beneficial bacterium Pseudomonas putida

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Silver nanoparticles (Ag NPs) are being increasingly used in many consumer products owing to their excellent antimicrobial properties. The continuous use of Ag NPs in consumer products will lead to environmental release. The present study evaluated the toxic effects and the possible underlying mechanism of Ag NPs on Pseudomonas putida. Ag NP exposure inhibited growth of the cells. Increased lipid peroxidation occurred coincident with suppression of the antioxidant defense system. Ag NP exposure caused reactive oxygen species (ROS) production, glutathione depletion and inactivation of the antioxidant enzyme superoxide dismutase, catalase and glutathione reductase. The addition of superoxide dismutase or pretreatment of P. putida with N-acetyl cysteine that quenches ROS reduced toxicity of the NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Woodrow Wilson Institute (2009) Nanotechnology consumer product inventory. http://www.nanotechproject.org/inventories/consumer/analysis_draft/

  2. http://pubs.acs.org/cen/news/88/i39/8839news2.html

  3. Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453

    Article  CAS  Google Scholar 

  4. Boxall A, Chaudhry Q, Jones A, Jefferson B, Watts C (2008) Current and future predicted environmental exposure to engineered nanoparticles: report to Defra

  5. Senjen R (2007) Nanosilver—a threat to soil, water and human health?. Friends of the Earth, Australia

    Google Scholar 

  6. Impellitteri CA, Tolaymat TM, Scheckel KG (2009) The speciation of silver nanoparticles in antimicrobial fabric before and after exposure to a hypochlorite/detergent solution. J Environ Qual 38:1528–1530

    Article  CAS  Google Scholar 

  7. Kaegi R, Sinnet B, Zuleeg S, Hagendorfer H et al (2010) Release of silver nanoparticles from outdoor facades. Environ Pollut 158:2900–2905

    Article  CAS  Google Scholar 

  8. Khan SS, Srivatsan P, Vaishnavi N, Mukherjee A, Chandrasekaran N (2011) Interaction of silver nanoparticles (SNPs) with bacterial extracellular proteins (ECP) and its adsorption isotherms and kinetics. J Hazard Mater 192:299–306

    CAS  Google Scholar 

  9. Khan SS, Mukherjee A, Chandrasekaran N (2011) Impact of exopolysaccharides on the stability of silver nanoparticles in water. Water Res 45:5184–5190

    Article  CAS  Google Scholar 

  10. Dasari TP, Hwang HM (2010) The effect of humic acids on the cytotoxicity of silver nanoparticles to a natural aquatic bacterial assemblage. Sci Total Environ 408:5817–5823

    Article  CAS  Google Scholar 

  11. Wigginton NS, DeTitta A, Piccapietra F, Dobias J et al (2010) Binding of silver nanoparticles to bacterial proteins depends on surface modifications and inhibits enzymatic activity. Environ Sci Technol 44:2163–2168

    Article  CAS  Google Scholar 

  12. Khan SS, Mukherjee A, Chandrasekaran N (2011) Studies on interaction of colloidal silver nanoparticles (SNPs) with five different bacterial species. Colloid Surf B 87:129–138

    Article  CAS  Google Scholar 

  13. Thompson DG, Enright A, Faulds K, Smith WE, Graham D (2008) Ultrasensitive DNA detection using oligonucleotide–silver nanoparticle conjugates. Anal Chem 80:2805–2810

    Article  CAS  Google Scholar 

  14. Bar-Or D, Rael LT, Lau EP, Rao NK, Thomas GW, Winkler JV et al (2001) An analog of the human albumin N-terminus (Asp-Ala-His-Lys) prevents formation of copper-induced reactive oxygen species. Biochem Biophys Res Commun 284:856–862

    Article  CAS  Google Scholar 

  15. Oyama Y, Hayashi A, Ueha T, Maekawa K (1994) Characterization of 2′,7′-dichlorofluorescin fluorescence in dissociated mammalian brain neurons: estimation on intracellular content of hydrogen peroxide. Brain Res 635:113–117

    Article  CAS  Google Scholar 

  16. Winterbourn C, Hawkins R, Brian M, Carrell R (1975) The estimation of red cell superoxide dismutase activity. J Lab Clin Med 85:337–341

    CAS  Google Scholar 

  17. Beers RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

    CAS  Google Scholar 

  18. Moron MS, Kepeierre JW (1979) Levels of glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochem Biophys Acta 582:67–68

    Article  CAS  Google Scholar 

  19. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720

    Article  CAS  Google Scholar 

  20. Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–716

    Article  CAS  Google Scholar 

  21. El-Badawy AM, Silva RG, Morris B, Scheckel KG et al (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45:283–287

    Article  CAS  Google Scholar 

  22. Jiang JK, Oberdorster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89

    Article  CAS  Google Scholar 

  23. Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK et al (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–13619

    Article  CAS  Google Scholar 

  24. AshaRani PV, Mun GLK, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290

    Article  CAS  Google Scholar 

  25. Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P et al (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloid Surf B 76:50–56

    Article  CAS  Google Scholar 

  26. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Article  CAS  Google Scholar 

  27. Navarro E, Piccapetra F, Wagner B, Marconi F et al (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964

    Article  CAS  Google Scholar 

  28. Yamanaka M, Hara K, Kudo J (2005) Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol 71:7589–7593

    Article  CAS  Google Scholar 

  29. Li N, Xia T, Nel AE (2008) The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic Biol Med 44:1689–1699

    Article  CAS  Google Scholar 

  30. Kim JS, Kuk E, Yu KN, Kim JH et al (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine NBM 3:95–101

    Article  CAS  Google Scholar 

  31. Feinendegen LE (2002) Reactive oxygen species in cell responses to toxic agents. Hum Exp Toxicol 21:85–90

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank Science and Engineering Research Board, Department of Science and Technology, Government of India for providing funding (SB/FT/LS-281/2012) to carry out our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sudheer Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudheer Khan, S., Ghouse, S.S. & Chandran, P. Toxic effect of environmentally relevant concentration of silver nanoparticles on environmentally beneficial bacterium Pseudomonas putida . Bioprocess Biosyst Eng 38, 1243–1249 (2015). https://doi.org/10.1007/s00449-015-1365-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1365-z

Keywords

Navigation