Skip to main content

Advertisement

Log in

Engineering solutions for open microalgae mass cultivation and realistic indoor simulation of outdoor environments

  • Mini Review
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Microalgae could become an important renewable source for chemicals, food, and energy if process costs can be reduced. In the past 60 years, relevant factors in open outdoor mass cultivation of microalgae were identified and elaborate solutions regarding bioprocesses and bioreactors were developed. An overview of these solutions is presented. Since the cost of most microalgal products from current mass cultivation systems is still prohibitively high, further development is required. The application of complex computational techniques for cost-effective process and reactor development will become more important if experimental validation of simulation results can easily be achieved. Due to difficulties inherent to outdoor experimentation, it can be useful to conduct validation experiments indoors. Considerations and approaches for realistic indoor reproduction of the most important environmental conditions in microalgae cultivation experiments—light, temperature, and substance concentrations, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Grobbelaar JU (2012) Microalgae mass culture: the constraints of scaling-up. J Appl Phycol 24:315–318. doi:10.1007/s10811-011-9728-6

    CAS  Google Scholar 

  2. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg Res 1:20–43. doi:10.1007/s12155-008-9008-8

    Google Scholar 

  3. Posten C (2012) Discovering Microalgae as Source for Sustainable Biomass. In: Walter C, Posten C (eds) Microalgal biotechnology: potential and production. De Gruyter, Berlin, pp 1–8

    Google Scholar 

  4. Soeder CJ (1978) Economic considerations concerning the autotrophic production of microalgae at the technical scale. In: Soeder CJ, Binsack R (eds) Microalgae for food and feed. A status analysis: proceedings of the German-Israeli workshop, held 17–18 October 1977 at Neuherberg, Schweizerbart, Stuttgart, pp 259–273

  5. Goldman JC (1979) Outdoor algal mass cultures—I. Applications. Water Res 13:1–19. doi:10.1016/0043-1354(79)90249-5

    Google Scholar 

  6. Becker EW (1993) Microalgae. Biotechnology and microbiology. Cambridge University Press, Cambridge

    Google Scholar 

  7. Tredici MR (1999) Bioreactors, Photo. In: Flickinger MC, Drew SW (eds) The encyclopedia of bioprocess technology. Fermentation, biocatalysis, and bioseparation. Wiley, New York

  8. Grobbelaar JU (2009) From laboratory to commercial production: a case study of a Spirulina (Arthrospira) facility in Musina, South Africa. J Appl Phycol 21:523–527. doi:10.1007/s10811-008-9378-5

    CAS  Google Scholar 

  9. Klein-Marcuschamer D, Chisti Y, Benemann JR, Lewis D (2013) A matter of detail: Assessing the true potential of microalgal biofuels. Biotechnol Bioeng 110:2317–2322. doi:10.1002/bit.24967

    CAS  Google Scholar 

  10. Borowitzka MA (2013) Energy from Microalgae: A Short History. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 1–16

    Google Scholar 

  11. Borowitzka MA, Moheimani NR (2013) Open pond culture systems. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 133–152

    Google Scholar 

  12. Zittelli GC, Rodolfi L, Bassi N, Biondi N, Tredici MR (2013) Photobioreactors for Microalgal Biofuel Production. In: Borowitzka MA, Moheimani NR (eds) Algae for Biofuels and Energy. Springer, Dordrecht, pp 115–132

    Google Scholar 

  13. Grobbelaar JU (2009) Factors governing algal growth in photobioreactors: the “open” versus “closed” debate. J Appl Phycol 21:489–492. doi:10.1007/s10811-008-9365-x

    CAS  Google Scholar 

  14. Soeder CJ (1972) Die Entwicklung von Anlagen für die Erzeugung von Algenprotein. Untersuchungsbericht UB 213/72 des KRUPP Forschungsinstituts. Fried. Krupp GmbH, Essen

  15. Dodd J (1986) Elements of pond design and construction. In: Richmond A (ed) Handbook of microalgal mass culture. CRC Press, Boca Raton, pp 265–283

    Google Scholar 

  16. Oswald W (1988) Large-scale algal culture systems (engineering aspects). In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 357–394

    Google Scholar 

  17. Sompech K, Chisti Y, Srinophakun T (2012) Design of raceway ponds for producing microalgae. Biofuels 3:387–397. doi:10.4155/bfs.12.39

    CAS  Google Scholar 

  18. Heussler P (1985) Aspects of sloped algae pond engineering. In: Becker EW (ed) Production and use of microalgae. E. Schweizerbart, Stuttgart, pp 71–83

    Google Scholar 

  19. Märkl H, Mather M (1985) Mixing and aeration of shallow open ponds. In: Becker EW (ed) Production and use of microalgae. E. Schweizerbart, Stuttgart, pp 85–94

    Google Scholar 

  20. Clément C, Lonchamp D, Rebeller M, van Landeghem H (1980) The development of spirulina algae cultivation. Chemical Engineering Science 35:119–126. doi:10.1016/0009-2509(80)80078-9

    Google Scholar 

  21. Euzen J, Trambouze P, Wauquier J (1993) Scale-up methodology for chemical processes. Gulf Pub. Co.; Éditions Technip, Houston

    Google Scholar 

  22. Šetlík I, Šust V, Málek I (1970) Dual purpose open circulation units for large scale culture of algae in temperate zones. I. Basic design considerations and scheme of a pilot plant. Algol Stud/Archiv für Hydrobiol Suppl Vol 1:111–164

    Google Scholar 

  23. Lívanský K (1992) Influence of some nutrient solution components and holding time of algal culture in CO2 gas saturator on the allowable length of culture flow and other parameters of CO2 supply into open cultivation units. Algol Stud 67:135–146

    Google Scholar 

  24. Lívanský K, Doucha J (1999) Liquid film mass transfer coefficients KL for O2 and CO2 desorption from open thin-layer microalgal cultures into atmosphere. Archiv für Hydrobiol 127:109–132

    Google Scholar 

  25. Doucha J, Lívanský K (2014) High Density Outdoor Microalgal Culture. In: Bajpai R, Prokop A, Zappi M (eds) Algal Biorefineries, vol 1., Cultivation of Cells and ProductsSpringer, Dordrecht, pp 147–176

    Google Scholar 

  26. Sheehan J, Dunahay T, Benemann JR, Roessler P (1998) A Look back at the US department of energy’s aquatic species program: Biodiesel from algae

  27. Pienkos PT, Darzins A (2009) The promise and challenges of microalgal-derived biofuels. Biofuels. Bioprod Bioref 3:431–440. doi:10.1002/bbb.159

    CAS  Google Scholar 

  28. Lundquist TJ, Woertz IC, Quinn NWT, Benemann JR (2010) A realistic technology and engineering assessment of algae biofuel production, Energy Biosciences Institute

  29. Luque R (2010) Algal biofuels: the eternal promise? Energy Environ Sci 3:254. doi:10.1039/b922597h

    CAS  Google Scholar 

  30. Wigmosta MS, Coleman AM, Skaggs RJ, Huesemann MH, Lane LJ (2011) National microalgae biofuel production potential and resource demand. Water Resour Res. doi:10.1029/2010WR009966

    Google Scholar 

  31. Grobbelaar JU (2013) Mass production of microalgae at optimal photosynthetic rates. In: Dubinsky Z (ed) Photosynthesis. InTech. doi:10.5772/55193

  32. Rosello Sastre R (2012) Products from microalgae: An overview. In: Walter C, Posten C (eds) Microalgal biotechnology: integration and economy. De Gruyter, Berlin, pp 15–50

    Google Scholar 

  33. Hudek K, Davis LC, Ibbini J, Erickson L (2014) Commercial products from algae. In: Bajpai R, Prokop A, Zappi M (eds) Algal biorefineries. Volume 1: Cultivation of Cells and Products, Springer, Dordrecht

  34. Grobbelaar JU (2000) Physiological and technological considerations for optimising mass algal cultures. J Appl Phycol 12:201–206. doi:10.1023/A:1008155125844

    Google Scholar 

  35. Richmond A (2000) Microalgal biotechnology at the turn of the millennium: A personal view. J Appl Phycol 12:441–451. doi:10.1023/A:1008123131307

    Google Scholar 

  36. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306. doi:10.1016/j.biotechadv.2007.02.001

    CAS  Google Scholar 

  37. Larkum AW, Ross IL, Kruse O, Hankamer B (2012) Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends Biotechnol 30:198–205. doi:10.1016/j.tibtech.2011.11.003

    CAS  Google Scholar 

  38. Huntley ME, Redalje DG (2007) CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig Adapt Strat Glob Chang 12:573–608. doi:10.1007/s11027-006-7304-1

    Google Scholar 

  39. Schuhmann H, Lim DKY, Schenk PM (2012) Perspectives on metabolic engineering for increased lipid contents in microalgae. Biofuels 3:71–86. doi:10.4155/BFS.11.147

    CAS  Google Scholar 

  40. Ventura JS, Yang B, Lee Y, Lee K, Jahng D (2013) Life cycle analyses of CO2, energy, and cost for four different routes of microalgal bioenergy conversion. Bioresour Technol 137:302–310. doi:10.1016/j.biortech.2013.02.104

    CAS  Google Scholar 

  41. Brentner LB, Eckelman MJ, Zimmerman JB (2011) Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel. Environ Sci Technol 45:7060–7067. doi:10.1021/es2006995

    CAS  Google Scholar 

  42. Borowitzka MA (2013) Techno-Economic Modeling for Biofuels from Microalgae. In: Borowitzka MA, Moheimani NR (eds) Algae for Biofuels and Energy. Springer, Dordrecht, pp 255–264

    Google Scholar 

  43. Slade R, Bauen A (2013) Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy 53:29–38. doi:10.1016/j.biombioe.2012.12.019

    Google Scholar 

  44. Benemann JR, Weissman JC, Goebel RP, Augenstein D (1986) Microalgae Fuel Economics. In: Barclay WR, McIntosh RP (eds) Algal Biomass Technologies. An interdisciplinary perspective: proceedings of a workshop on the present status and future directions for biotechnologies based on algal biomass production, April 5–7, 1984, University of Colorado, Boulder. J. Cramer, Berlin, pp 176–191

  45. Grobbelaar JU, Nedbal L, Tichy L, Šetlík I (1995) Variation in some photosynthetic characteristics of microalgae cultured in outdoor thin-layered sloping reactors. J Appl Phycol 7:175–184. doi:10.1007/BF00693065

    CAS  Google Scholar 

  46. Merino M, Moya R, Rodriguez A, Heussler P (1985) Control of the parasite Aphelidium sp. in mass cultures of Scenedesmus obliquus by chemical agents. In: Becker EW (ed) Production and use of microalgae. E. Schweizerbart, Stuttgart, pp 115–124

  47. Belay A (1997) Mass culture of spirulina outdoors—The Earthrise farms experience. In: Vonshak A (ed) Spirulina platensis (Arthrospira). Physiol Cell Biol Biotechnol, Taylor & Francis, London, pp 131–158

  48. Day JG, Slocombe SP, Stanley MS (2012) Overcoming biological constraints to enable the exploitation of microalgae for biofuels. Bioresour Technol 109:245–251. doi:10.1016/j.biortech.2011.05.033

    CAS  Google Scholar 

  49. Heussler P, Castillo SJ, Merino MF (1978) Parasite problems in the outdoor cultivation of Scenedesmus. In: Soeder CJ, Binsack R (eds) Microalgae for food and feed. A status analysis : proceedings of the German-Israeli workshop, held 17–18 October 1977 at Neuherberg. Schweizerbart, Stuttgart, pp 223–227

  50. Mayer AM, Zuri U, Shain Y, Ginzburg H (1964) Problems of design and ecological considerations in mass culture of algae. Biotechnol Bioeng 6:173–190. doi:10.1002/bit.260060207

    Google Scholar 

  51. Sharma KK, Schuhmann H, Schenk PM (2012) High lipid induction in microalgae for biodiesel production. Energies 5:1532–1553. doi:10.3390/en5051532

    CAS  Google Scholar 

  52. Vasudevan PT, Briggs M (2008) Biodiesel production—current state of the art and challenges. J Ind Microbiol Biotechnol 35:421–430. doi:10.1007/s10295-008-0312-2

    CAS  Google Scholar 

  53. Benemann JR, Tillet D (1987) Effects of fluctuating environments on the selection of high yielding microalgae. Final report to the Solar Energy Research Institute under subcontract XK-4-04136-06

  54. Rusch KA, Michael Christensen J (2003) The hydraulically integrated serial turbidostat algal reactor (HISTAR) for microalgal production. Aquacult Eng 27:249–264. doi:10.1016/S0144-8609(02)00086-9

    Google Scholar 

  55. Björkmann L, Björkmann M, Bresky A, Enebo L, Rennerfelt J (1956) Experiments on the culture of Chlorella for food purposes. Acta polytechnica 3–18

  56. Benemann JR, Weissman JC, Koopman BL, Oswald WJ (1977) Energy production by microbial photosynthesis. Nature 268:19–23

    CAS  Google Scholar 

  57. Castillo J, Merino M, Heussler P (1980) Production and ecological implications of algae mass culture under Peruvian conditions. In: Shelef G, Soeder CJ (eds) Algae biomass. Production and use. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 123–134

    Google Scholar 

  58. Richmond A (1988) Spirulina. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 85–121

    Google Scholar 

  59. Borowitzka MA (2005) Culturing microalgae in outdoor ponds. In: Andersen RA (ed) Algal culturing techniques. Elsevier/Academic Press, Burlington, pp 205–218

    Google Scholar 

  60. Terry KL, Raymond LP (1985) System design for the autotrophic production of microalgae. Enzym Microbial Technol 7:474–487. doi:10.1016/0141-0229(85)90148-6

    Google Scholar 

  61. Chiaramonti D, Prussi M, Casini D, Tredici MR, Rodolfi L, Bassi N, Zittelli GC, Bondioli P (2013) Review of energy balance in raceway ponds for microalgae cultivation: Re-thinking a traditional system is possible. Appl Energy 102:101–111. doi:10.1016/j.apenergy.2012.07.040

    Google Scholar 

  62. Prussi M, Buffi M, Casini D, Chiaramonti D, Martelli F, Carnevale M, Tredici MR, Rodolfi L (2014) Experimental and numerical investigations of mixing in raceway ponds for algae cultivation. Biomass Bioenergy 67:390–400. doi:10.1016/j.biombioe.2014.05.024

    CAS  Google Scholar 

  63. Borowitzka LJ, Borowitzka MA, Moulton TP (1984) The mass culture of Dunaliella salina for fine chemicals: from laboratory to pilot plant. Hydrobiologia 116–117:115–121. doi:10.1007/BF00027649

    Google Scholar 

  64. Becker EW (1982) Mikroalgen. Ergebnisse aus drei Versuchsvorhaben, GTZ, Eschborn

    Google Scholar 

  65. Heussler P (1985) Development and results of the Peruvian-German Microalgae Project. In: Becker EW (ed) Production and use of microalgae. E. Schweizerbart, Stuttgart, pp 1–8

    Google Scholar 

  66. Schulz P, Heussler P, Moya R, Merino M (1985) Production cost of Scenedesmus and the economical impact of technological improvements and plant size. In: Becker EW (ed) Production and use of microalgae. E. Schweizerbart, Stuttgart, pp 125–137

    Google Scholar 

  67. Benemann JR, Oswald W (1996) Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass. Final Rep

  68. Molina Grima E, Acién Fernández FG, Robles Medina A (2007) Downstream Processing of Cell-mass and Products. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Wiley, Oxford, pp 215–252

    Google Scholar 

  69. Stephens E, Wagner L, Ross IL, Hankamer B (2012) Microalgal production systems: global impact of industry scale-up. In: Walter C, Posten C (eds) Microalgal biotechnology: integration and economy. De Gruyter, Berlin, pp 267–306

    Google Scholar 

  70. Bergmann P, Ripplinger P, Beyer L, Trösch W (2012) Autotrophic, industrial cultivation of photosynthetic microorganisms using flue gas as carbon source and Subitec’s flat-panel-airlift (FPA) cultivation system. In: Walter C, Posten C (eds) Microalgal biotechnology: potential and production. De Gruyter, Berlin, pp 237–242

    Google Scholar 

  71. Zittelli GC, Biondi N, Rodolfi L, Tredici MR (2013) Photobioreactors for mass production of microalgae. In: Richmond A, Hu Q (eds) Handbook of microalgal culture. Applied phycology and biotechnology, second edn. Wiley Blackwell, Chichester, pp 225–266

  72. Richmond A, Becker EW (1986) Technological aspects of mass cultivation —a general outline. In: Richmond A (ed) Handbook of microalgal mass culture. CRC Press, Boca Raton, pp 245–263

    Google Scholar 

  73. Doucha J, Lívanský K (2006) Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a Middle and Southern European climate. J Appl Phycol 18:811–826. doi:10.1007/s10811-006-9100-4

    CAS  Google Scholar 

  74. Masojídek J, Kopecký J, Giannelli L, Torzillo G (2011) Productivity correlated to photobiochemical performance of Chlorella mass cultures grown outdoors in thin-layer cascades. J Ind Microbiol Biotechnol 38:307–317. doi:10.1007/s10295-010-0774-x

    Google Scholar 

  75. Borowitzka MA (2013) Dunaliella: Biology, Production, and Markets. In: Richmond A, Hu Q (eds) Handbook of microalgal culture. Applied phycology and biotechnology, Second edn. Wiley Blackwell, Chichester, pp 359–368

  76. Chisti Y (2012) Raceways-based production of algal crude oil. In: Walter C, Posten C (eds) Microalgal biotechnology: potential and production. De Gruyter, Berlin, pp 113–146

    Google Scholar 

  77. Feinberg D, Karpuk M (1990) CO2 sources for microalgae-based liquid fuel production. Prepared under subcontract no. HK-8-18045-1. Solar Energy Research Institute

  78. Doucha J, Straka F, Lívanský K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412. doi:10.1007/s10811-005-8701-7

    Google Scholar 

  79. van Den Hende S, Vervaeren H, Boon N (2012) Flue gas compounds and microalgae: (Bio-) chemical interactions leading to biotechnological opportunities. Biotechnol Adv 30:1405–1424. doi:10.1016/j.biotechadv.2012.02.015

    Google Scholar 

  80. Ben-Amotz A (2009) Bio-fuel and CO2 capture by micro-algae. 4th International Bioenergy Congress, Curitiba

  81. de Godos I, Mendoza JL, Acién FG, Molina E, Banks CJ, Heaven S, Rogalla F (2014) Evaluation of carbon dioxide mass transfer in raceway reactors for microalgae culture using flue gases. Bioresour Technol 153:307–314. doi:10.1016/j.biortech.2013.11.087

    Google Scholar 

  82. Black J (2014) Cost and performance metrics used to assess carbon utilization and storage technologies. DOE/NETL-341/093013 Final Rep

  83. Asadollahzadeh MJ, Ardjmand M, Seafkordi AA, Heydarian SM (2014) Efficient storage and utilization of CO2 in open raceway ponds for cultivation of microalgae. Korean J Chem Eng 31:1425–1432. doi:10.1007/s11814-014-0059-6

    CAS  Google Scholar 

  84. Warner CJ (2012) How long until algal biofuel is commercially relevant? Achieving technology readiness in the near term. 5. Bundesalgenstammtisch, Pullach

  85. Belay A (2013) Biology and Industrial Production of Arthrospira (Spirulina). In: Richmond A, Hu Q (eds) Handbook of microalgal culture. Applied phycology and biotechnology, Second edn. Wiley Blackwell, Chichester, pp 339–358

  86. Carvalho AP, Malcata FX (2001) Transfer of carbon dioxide within cultures of microalgae: plain bubbling versus hollow-fiber modules. Biotechnol Prog 17:265–272. doi:10.1021/bp000157v

    CAS  Google Scholar 

  87. Weissman JC, Goebel RP (1987) Design and analysis of pond systems for the purpose of producing fuels. SERI/STR-231-2840, Golden, Colorado

  88. Lívanský K, Doucha J (1998) Testing of fine-bubble aeration diffusers as CO2 saturation elements for outdoor microalgal cultures. Archiv für Hydrobiol 126:129–138

    Google Scholar 

  89. Vasquez V, Heussler P (1985) Carbon dioxide balance in open air mass culture of algae. In: Becker EW (ed) Production and use of microalgae. E. Schweizerbart, Stuttgart, pp 95–113

    Google Scholar 

  90. Benemann JR (2011) Can we save the world with algae?. Presentation at University of British Columbia, Department of Chemical Engineering

  91. Lívanský K (1990) Losses of CO2 in outdoor mass algal cultures: determination of the mass transfer coefficient KL by means of measured pH course in NaHCO3 solution. Algol Stud 58:87–97

    Google Scholar 

  92. Heussler P, Castillo J, Merino M, Vasquez V (1978) Improvements in pond construction for the mass production of microalgae. In: Soeder CJ, Binsack R (eds) Microalgae for food and feed. A status analysis: proceedings of the German-Israeli workshop, held 17-18 October 1977 at Neuherberg. Schweizerbart, Stuttgart, pp 254–258

  93. Weissman JC, Goebel RP, Benemann JR (1988) Photobioreactor design: Mixing, carbon utilization, and oxygen accumulation. Biotechnol Bioeng 31:336–344. doi:10.1002/bit.260310409

    CAS  Google Scholar 

  94. Borowitzka MA (2013) Species and Strain Selection. In: Borowitzka MA, Moheimani NR (eds) Algae for Biofuels and Energy. Springer, Dordrecht, pp 77–90

    Google Scholar 

  95. Richmond A (1999) Physiological principles and modes of cultivation in mass production of photoautotrophic microalgae. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis, London, pp 353–386

    Google Scholar 

  96. Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577. doi:10.1016/j.rser.2009.10.009

    CAS  Google Scholar 

  97. Fon Sing MSD (2010) Strain selection and outdoor cultivation of halophilic microalgae with potential for large-scale biodiesel production. Murdoch University, Thesis

    Google Scholar 

  98. Tamiya H (1957) Mass Culture of Algae. Annu Rev Plant Physiol 8:309–334 10.1146/annurev. pp. 08.060157.001521

    CAS  Google Scholar 

  99. Balloni W, Materassi R, Pelosi E, Pushparaj B, Florenzano G, Stengel E, Soeder CJ (1981) Comparison of two different culture devices for mass production of microalgae at Firenze (Italy) and Dortmund (Germany). I. Yields of Scenedesmus obliquus and Coelastrum sphaericum at Firenze. Algol Stud/Archiv für Hydrobiol Suppl Vol: 324–331

  100. Bajpai R, Zappi M, Dufreche S, Subramaniam R, Prokop A (2014) Status of algae as vehicles for commercial production of fuels and chemicals. In: Bajpai R, Prokop A, Zappi M (eds) Algal Biorefineries, vol 1., Cultivation of cells and productsSpringer, Dordrecht, pp 3–24

    Google Scholar 

  101. Neenan B, Feinberg D, Hill A, McIntosh R, Terry K (1986) Fuels from microalgae: technology status, potential, and research requirements. Prepared under Task No. 4513.20 FTP No. 513. Solar Energy Research Institute

  102. Galiby B (1988) L’algue spiruline à la Martinique, Spirulina geitleri J. de Toni : culture, aspect nutritionnel et problèmes posés par sa commercialisation. Thèse de Doctorat, Université de Montpellier I

  103. Borowitzka LJ, Moulton TP, Borowitzka MA (1986) Salinity and the Commercial Production of Beta-Carotene from Dunaliella salina. In: Barclay WR, McIntosh RP (eds) Algal Biomass Technologies. An interdisciplinary perspective : proceedings of a workshop on the present status and future directions for biotechnologies based on algal biomass production, April 5–7, 1984, University of Colorado, Boulder. J. Cramer, Berlin, pp 224–229

  104. Heussler P, Castillo J, Merino M (1978) Ecological balance of algal cultures in arid climates: Major results of the Peruvian-German Microalgae Project at Trujillo. In: Soeder CJ, Binsack R (eds) Microalgae for food and feed. A status analysis: proceedings of the German-Israeli workshop, held 17–18 October 1977 at Neuherberg. Schweizerbart, Stuttgart, pp 17–22

  105. Fon Sing S, Isdepsky A, Borowitzka MA, Lewis DM (2014) Pilot-scale continuous recycling of growth medium for the mass culture of a halotolerant Tetraselmis sp. in raceway ponds under increasing salinity: A novel protocol for commercial microalgal biomass production. Bioresour Technol 161:47–54. doi:10.1016/j.biortech.2014.03.010

    CAS  Google Scholar 

  106. Prokop A, Fekri M (1984) Potential of mass algae production in Kuwait. Biotechnol Bioeng 26:1282–1287. doi:10.1002/bit.260261104

    CAS  Google Scholar 

  107. Béchet Q, Shilton A, Park JBK, Craggs RJ, Guieysse B (2011) Universal temperature model for shallow algal ponds provides improved accuracy. Environ Sci Technol 45:3702–3709. doi:10.1021/es1040706

    Google Scholar 

  108. Chernavskaya NM, Ničiporovič AA (1967) Harmonious combination of illumination and nitrogen nutrition. In: Ničiporovič AA (ed) Photosynthesis of productive systems. Israel Program for Scientific Translations, Jerusalem

  109. Soeder CJ (1971) Mikroalgenkultur im technischen Maßstab. Biol unserer Zeit 1:133–142. doi:10.1002/biuz.19710010502

    Google Scholar 

  110. Ingham J, Dunn IJ, Heinzle E, Prenosil JE, Snape JB (2007) Chemical engineering dynamics. An introduction to modelling and computer simulation, 3rd, completely rev. ed. Wiley-VCH, Weinheim

  111. Chhatre S (2013) Modelling approaches for bio-manufacturing operations. In: Mandenius C, Titchener-Hooker NJ (eds) Measurement, monitoring, modelling and control of bioprocesses, vol 132. Springer, Berlin, pp 85–107

    Google Scholar 

  112. Lucker BF, Hall CC, Zegarac R, Kramer DM (2014) The environmental photobioreactor (ePBR): An algal culturing platform for simulating dynamic natural environments. Algal Res. doi:10.1016/j.algal.2013.12.007

    Google Scholar 

  113. Nielsen JH, Villadsen J, Lidén G (2003) Bioreaction engineering principles, 2nd edn. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  114. Motta S, Pappalardo F (2013) Mathematical modeling of biological systems. Briefings in Bioinformatics 14:411–422. doi:10.1093/bib/bbs061

    CAS  Google Scholar 

  115. Paez TL (2009) Introduction to Model Validation. Proceedings of the IMAC-XXVII

  116. James SC, Boriah V (2010) Modeling algae growth in an open-channel raceway. J Comput Biol 17:895–906. doi:10.1089/cmb.2009.0078

    CAS  Google Scholar 

  117. Babuska I, Oden J (2004) Verification and validation in computational engineering and science: basic concepts. Comput Methods Appl Mech Eng 193:4057–4066. doi:10.1016/j.cma.2004.03.002

    Google Scholar 

  118. Bernard O (2011) Hurdles and challenges for modelling and control of microalgae for CO2 mitigation and biofuel production. J Process Control 21:1378–1389. doi:10.1016/j.jprocont.2011.07.012

    CAS  Google Scholar 

  119. Huesemann MH, van Wagenen J, Miller T, Chavis A, Hobbs S, Crowe B (2013) A screening model to predict microalgae biomass growth in photobioreactors and raceway ponds. Biotechnol Bioeng doi:10.1002/bit.24814

  120. Stengel E, Soeder CJ (1975) Control of photosynthetic production in aquatic ecosystems. In: Cooper JP (ed) Photosynthesis and productivity in different environments. Cambridge University Press, Cambridge, pp 645–660

    Google Scholar 

  121. Geiger DR (1994) General lighting requirements for photosynthesis. In: Tibbitts TW (ed) International Lighting in Controlled Environments Workshop. Kennedy Space Center, FL

    Google Scholar 

  122. Senger H, Hermsmeier D (1994) UV-A/Blue-light responses in algae. In: Tibbitts TW (ed) International Lighting in controlled environments workshop. Kennedy Space Center, FL, pp 125–142

    Google Scholar 

  123. Bugbee B (1994) Effects of radiation quality, intensity, and duration on photosynthesis and growth. In: Tibbitts TW (ed) International lighting in controlled environments workshop. Kennedy Space Center, FL

    Google Scholar 

  124. Incoll L, Long S, Ashmore M (1981) SI units in publications in plant science. In: Smith H (ed) Commentaries in plant science. Articles published originally in current advances in plant science between 1976 and 1980, 1st edn. pp 83–96

  125. Biggs W (1986) Radiation measurement. In: Gensler WG (ed) Advanced agricultural instrumentation. Design and use. Proceedings of the NATO Advanced Study Institute on Advanced Agricultural Instrumentation, Il Ciocco (Pisa), Italy, May 27-June 9, 1984. M. Nijhoff, Dordrecht, pp 3–38

  126. Ross J, Sulev M (2000) Sources of errors in measurements of PAR. Agric For Meteorol 100:103–125. doi:10.1016/S0168-1923(99)00144-6

    Google Scholar 

  127. Raven JA, Hurd CL (2012) Ecophysiology of photosynthesis in macroalgae. Photosynth Res 113:105–125. doi:10.1007/s11120-012-9768-z

    CAS  Google Scholar 

  128. Häder D, Kumar HD, Smith RC, Worrest RC (2007) Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem Photobiol Sci 6:267. doi:10.1039/b700020k

    Google Scholar 

  129. Larkum AW, Kühl M (2005) Chlorophyll d: the puzzle resolved. Trends Plant Sci 10:355–357. doi:10.1016/j.tplants.2005.06.005

    CAS  Google Scholar 

  130. Chen M, Blankenship RE (2011) Expanding the solar spectrum used by photosynthesis. Trends Plant Sci 16:427–431. doi:10.1016/j.tplants.2011.03.011

    CAS  Google Scholar 

  131. McCree KJ (1972) The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agric Meteorol 9:191–216. doi:10.1016/0002-1571(71)90022-7

    Google Scholar 

  132. Lee RE (2008) Phycology, 4th edn. Cambridge University Press, Leiden

    Google Scholar 

  133. Sun J, Nishio JN, Vogelmann TC (1998) Green light drives CO2 fixation deep within leaves. Plant Cell Physiol 39:1020–1026

    CAS  Google Scholar 

  134. Kim H, Goins GD, Wheeler RM, Sager JC (2004) Green-light supplementation for enhanced lettuce growth under red- and blue-light-emitting diodes. HortScience 39:1617–1622

    Google Scholar 

  135. Ničiporovič AA (1967) Aims of research on the photosynthesis of plants as a factor in productivity. In: Ničiporovič AA (ed) Photosynthesis of productive systems. Israel Program for Scientific Translations, Jerusalem

  136. Steup M (1975) Die Wirkung von blauem und rotem Licht auf die Synthese ribosomaler RNA bei Chlorella. Arch Microbiol 105:143–151. doi:10.1007/BF00447129

    CAS  Google Scholar 

  137. Cepák V, Pribyl P, Vítová M (2006) The effect of light color on the nucleocytoplasmic and chloroplast cycle of the green chlorococcal alga Scenedesmus obliquus. Folia Microbiol. (Praha) 51:342–348

    Google Scholar 

  138. Koç C, Anderson GA (2010) Use of RGB LEDs and fluorescents lamps as light sources to grow microalgae in a photo-bio reactor (PBR). A CSBE/ASABE Inter Sectional Meeting Presentation. Paper Number: MBSK 10-105. ASABE/CSBE North-Central Intersectional Meeting, Saskatoon, Saskatchewan, Canada

  139. Berberoglu H (2012) Natural versus artificial light usage in algal cultivation. Algal Biomass Summit, Denver

    Google Scholar 

  140. Zhao Y, Wang J, Zhang H, Yan C, Zhang Y (2013) Effects of various LED light wavelengths and intensities on microalgae-based simultaneous biogas upgrading and digestate nutrient reduction process. Bioresour Technol 136:461–468. doi:10.1016/j.biortech.2013.03.051

    CAS  Google Scholar 

  141. Kopecký J, Doucha J, Loest K, Pulz O (1996) Photoadaptation to spectral quality of light in the red alga Porphyridium cruentum. Algol Stud 81:53–67

    Google Scholar 

  142. Barnes C, Tibbitts TW, Sager J, Deitzer G, Bubenheim D, Koerner G, Bugbee B (1993) Accuracy of quantum sensors measuring yield photon flux and photosynthetic photon flux. HortScience 28:1197–1200

    CAS  Google Scholar 

  143. ASTM (2012) Terrestrial reference spectra for photovoltaic performance evaluation (G173-03). http://rredc.nrel.gov/solar/spectra/am1.5/

  144. Hogewoning SW, Douwstra P, Trouwborst G, van Ieperen W, Harbinson J (2010) An artificial solar spectrum substantially alters plant development compared with usual climate room irradiance spectra. J Exp Bot 61:1267–1276. doi:10.1093/jxb/erq005

    CAS  Google Scholar 

  145. Folta KM, Koss LL, McMorrow R, Kim H, Kenitz JD, Wheeler R, Sager JC (2005) Design and fabrication of adjustable red-green-blue LED light arrays for plant research. BMC Plant Biol 5:17. doi:10.1186/1471-2229-5-17

    Google Scholar 

  146. Carvalho AP, Silva SO, Baptista JM, Malcata FX (2011) Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Appl Microbiol Biotechnol 89:1275–1288. doi:10.1007/s00253-010-3047-8

    CAS  Google Scholar 

  147. Weyer KM, Bush DR, Darzins A, Willson BD (2010) Theoretical maximum algal oil production. Bioenerg Res 3:204–213. doi:10.1007/s12155-009-9046-x

    Google Scholar 

  148. Escobedo JF, Gomes EN, Oliveira AP, Soares J (2011) Ratios of UV, PAR and NIR components to global solar radiation measured at Botucatu site in Brazil. Renew Energy 36:169–178

    Google Scholar 

  149. Bat-Oyun T, Shinoda M, Tsubo M (2012) Effects of cloud, atmospheric water vapor, and dust on photosynthetically active radiation and total solar radiation in a Mongolian grassland. J Arid Land 4:349–356. doi:10.3724/SP.J.1227.2012.00349

    Google Scholar 

  150. Ohmura A, Dutton EG, Forgan B, Fröhlich C, Gilgen H, Hegner H, Heimo A, König-Langlo G, McArthur B, Müller G, Philipona R, Pinker RT, Whitlock CH, Dehne K, Wild M (1998) Baseline surface radiation network (BSRN/WCRP): new precision radiometry for climate research. Bull Am Meteorol Soc 79:2115–2136

    Google Scholar 

  151. Augustine JA, DeLuisi JJ, Long CN (2000) SURFRAD—a national surface radiation budget network for atmospheric research. Bull Am Meteorol Soc 81:2341–2357 10.1175/1520-0477(2000) 081 < 2341:SANSRB > 2.3.CO;2

    Google Scholar 

  152. Augustine JA, Hodges GB, Cornwall CR, Michalsky JJ, Medina CI (2005) An Update on SURFRAD—The GCOS Surface Radiation Budget Network for the Continental United States. J Atmos Oceanic Technol 22:1460–1472. doi:10.1175/JTECH1806.1

    Google Scholar 

  153. Frouin R, Pinker RT (1995) Estimating Photosynthetically Active Radiation (PAR) at the earth’s surface from satellite observations. Remote Sens Environ 51:98–107. doi:10.1016/0034-4257(94)00068-X

    Google Scholar 

  154. NOAA (2014) SURFRAD network: desert rock, NV. http://www.esrl.noaa.gov/gmd/grad/surfrad/desrock.html

  155. NOAA (2014) Description of SURFRAD daily data files. ftp://aftp.cmdl.noaa.gov/data/radiation/surfrad/Desert_Rock_NV/README

  156. Dyble M, Narendran N, Bierman A, Klein T (2005) Impact of dimming white LEDs: chromaticity shifts due to different dimming methods. In: Ferguson IT, Carrano JC, Taguchi T et al (eds) Proc. SPIE 5941, Fifth International Conference on Solid State Lighting. 59411H (September 14, 2005), vol 5941

  157. Poplawski M (2012) LED dimming: what you need to know. DOE SSL Program

  158. Kok B (1953) Experiments on Photosynthesis by Chlorella in Flashing Light. In: Burlew J (ed) Algal culture from laboratory to pilot plant. Carnegie Institution, Washington, pp 63–75

    Google Scholar 

  159. Roberts WJ (1998) Glazing materials, structural design, and other factors affecting light transmission in greenhouses. Greenhouse Glazing and Solar Radiation Transmission Workshop

  160. Attalah S, Waller P, Khawam G, Ryan R (2012) Energy evaluation in the High velocity algae raceway integrated design (ARID-HV). ASABE Annual International Meeting, Dallas

    Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by the Bavarian State Ministry for Economic Affairs and the Media, Energy and Technology (Munich, Germany), the Bavarian State Ministry of Education, Science and the Arts (Munich, Germany) and Airbus Group (Leiden, The Netherlands). NOAA’s Earth System Research Laboratory/Global Monitoring Division—Radiation (G-RAD, Boulder, CO, USA) is acknowledged for providing SURFRAD data. The authors thank Skye Thomas-Hall, Peer Schenk (The University of Queensland, Brisbane, Australia), and Thomas Brück (Industrial Biocatalysis, Technische Universität München, Garching, Germany) for fruitful discussions on microalgae research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Weuster-Botz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apel, A.C., Weuster-Botz, D. Engineering solutions for open microalgae mass cultivation and realistic indoor simulation of outdoor environments. Bioprocess Biosyst Eng 38, 995–1008 (2015). https://doi.org/10.1007/s00449-015-1363-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1363-1

Keywords

Navigation