Skip to main content
Log in

Development of a more efficient process for production of fuel ethanol from bamboo

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A process for production of fuel ethanol from bamboo treated with concentrated sulfuric acid has been previously proposed. To improve efficiency of the process, we tested saccharification with 70 weight% (wt%) sulfuric acid, acid–sugar separation by ion exclusion, addition of nutrients to the ethanol fermentation, and bioconversion of xylose to xylitol. A high efficiency of both sugar recovery (82.5 %) and acid recovery (97.5 %) was achieved in the saccharification process and in the continuous acid–sugar separation using a modified anion exchange resin, respectively. Reduction of the amount of mineral salts added to the saccharified liquid after acid–sugar separation did not negatively affect performance of the continuous ethanol fermentation. The ethanol yield and productivity were 93.7 % and 6 g/l h, respectively, at 35 °C and pH 4.0. And the ethanol yield and productivity were almost the same even at pH 3.5. Moreover, the xylose remaining in the fermented mash was efficiently converted to xylitol in batch fermentation by Candida tropicalis strain 2.1776. These results demonstrate a more efficient process for the production of fuel ethanol from bamboo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Scurlock JMO, Dayton DC, Hames B (2000) Bamboo: an overlooked biomass resource? Biomass Bioenergy 19:229–244

    Article  CAS  Google Scholar 

  2. Saka S (2001) Biomass energy environment. Industrial Publishing and Consulting, Tokyo, pp 61–103

    Google Scholar 

  3. Zhang XY, Yu HB, Huang HY, Liu YX (2007) Evaluation of biological pretreatment with white rot fungi for the enzymatic hydrolysis of bamboo culms. Int Biodeterior Biodegrad 60:159–164

    Article  CAS  Google Scholar 

  4. Tomitaka M, Taguchi H, Fukuda K, Akamatsu T, Kida K (2013) Isolation and characterization of a mutant recombinant Saccharomyces cerevisiae strain with high efficiency xylose utilization. J Biosci Bioeng 116:706–715

    Article  CAS  Google Scholar 

  5. Sathitsuksanoh N, Zhu ZG, Ho TJ, Bai MD, Zhang YHP (2010) Bamboo saccharification through cellulose solvent-based biomass pretreatment followed by enzymatic hydrolysis at ultra-low cellulase loadings. Bioresour Technol 101:4926–4929

    Article  CAS  Google Scholar 

  6. Shimokawa T, Ishida M, Yoshida S, Nojiri M (2009) Effects of growth stage on enzymatic saccharification and simultaneous saccharification and fermentation of bamboo shoots for bioethanol production. Bioresour Technol 100:6651–6654

    Article  CAS  Google Scholar 

  7. Sun Y, Lin L (2010) Hydrolysis behavior of bamboo fiber in formic acid reaction system. J Agric Food Chem 58:2253–2259

    Article  CAS  Google Scholar 

  8. Yamashita Y, Shono M, Sasaki C, Nakamura Y (2010) Alkaline peroxide pretreatment for efficient enzymatic saccharification of bamboo. Carbohydr Polym 79:914–920

    Article  CAS  Google Scholar 

  9. Sun ZY, Tang YQ, Iwanaga T, Sho T, Kida K (2011) Production of fuel ethanol from bamboo by the concentrated sulfuric acid hydrolysis followed by continuous ethanol fermentation. Bioresour Technol 102:10929–10935

    Article  CAS  Google Scholar 

  10. Sun ZY, Tang YQ, Morimura S, Kida K (2013) Reduction in environmental impact of sulfuric acid hydrolysis of bamboo for production of fuel ethanol. Bioresour Technol 128:87–93

    Article  CAS  Google Scholar 

  11. Miller S, Hester R (2007) Concentrated acid conversion of pine softwood to sugars. Part I: use of a twin-screw reactor for hydrolysis pretreatment. Chem Eng Comm 194:85–102

    Article  CAS  Google Scholar 

  12. Perry JH (1942) Chemical engineers’ handbook, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  13. Matsuura H, Sun ZY, Yanase M, Ihara T, Kida K, Jyo A (2014) Separation of sulfuric acid and monosaccharides with a strong-base anion exchange resin containing polystyrene sulfonate as polymeric counter ion to reduce tailing of sulfuric acid. J Ion Exch 25:81–87

    Article  Google Scholar 

  14. Kida K, Morimura S, Kume K, Suruga K, Sonoda Y (1991) Repeated-batch ethanol fermentation by a flocculating yeast Saccharomyces cerevisiae IR-2. J Ferment Bioeng 71:340–344

    Article  CAS  Google Scholar 

  15. Kida K, Morimura S, Kume K, Sonoda Y (1992) Repeated-batch fermentation process using a thermotolerant flocculating yeast constructed by protoplast fusion. J Ferment Bioeng 74:169–173

    Article  CAS  Google Scholar 

  16. Liu ZS, Wu XL, Kida K, Tang YQ (2012) Corn stover saccharification with the concentrated sulfuric acid: effects of saccharification conditions on sugar recovery and by-products generation. Bioresour Technol 119:224–233

    Article  CAS  Google Scholar 

  17. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) Determination of ash in biomass. Laboratory analytical procedure (LAP). NREL/TP-510-42622. National Renewable Energy Laboratory, Golden, Colorado

  18. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. Laboratory analytical procedure (LAP). NREL/TP-510-42618. National Renewable Energy Laboratory, Golden, Colorado

  19. Japanese Industrial Standards Committee (1986) Testing methods for industrial wastewater, JIS K 0102-1986. Japanese Industrial Standards Committee, Tokyo

    Google Scholar 

  20. Tang YQ, An MZ, Liu K, Nagai S, Shigematsu T, Morimura S, Kida K (2006) Ethanol production from acid hydrolysate of wood biomass using the flocculating yeast Saccharomyces cerevisiae strain KF-7. Process Biochem 41:909–914

    Article  CAS  Google Scholar 

  21. Kida K, Morimura S, Sonoda Y (1993) Accumulation of Propionic Acid during Anaerobic Treatment of Distillery Wastewater from Barley-Shochu Making. J Ferment Bioeng 75:213–216

    Article  CAS  Google Scholar 

  22. Kadam KL, Newman MM (1997) Development of a low-cost fermentation medium for ethanol production from biomass. Appl Microbiol Biotechnol 47:625–629

    Article  CAS  Google Scholar 

  23. Kida K, Yamadaki M, Asano S, Nakata T, Sonada Y (1989) The effect of aeration on stability of continuous ethanol fermentation by a flocculating yeast. J Ferment Bioeng 68:107–111

    Article  CAS  Google Scholar 

  24. Walther T, Hensirisak P, Agblevor FA (2001) The influence of aeration and hemicellulosic sugars on xylitol production by Candida tropicalis. Bioresour Technol 76:213–220

    Article  CAS  Google Scholar 

  25. Ping Y, Ling HZ, Song G, Ge JP (2013) Xylitol production from non-detoxified corncob hemicellulose acid hydrolysate by Candida tropicalis. Biochem Eng J 75:86–91

    Article  CAS  Google Scholar 

  26. Ko CH, Chiang PN, Chiu PC, Liu CC, Yang CL, Shiau IL (2008) Integrated xylitol production by fermentation of hardwood wastes. J Chem Technol Biotechnol 83:534–540

    Article  CAS  Google Scholar 

  27. Cheng KK, Zhang JA, Ling HZ, Ping WX, Huang W, Ge JP, Xu JM (2009) Optimization of pH and acetic acid concentration for bioconversion of hemicelluloses from corncobs to xylitol by Candida tropicalis. Biochem Eng J 43:203–207

    Article  CAS  Google Scholar 

  28. Huang CF, Jiang YF, Guo GL, Hwang WS (2011) Development of a yeast strain for xylitol production without hydrolysate detoxification as part of the integration of co-product generation within the lignocellulosic ethanol process. Bioresour Technol 102:3322–3329

    Article  CAS  Google Scholar 

  29. Kotter P, Ciriacy M (1993) Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38:776–783

    Article  Google Scholar 

  30. Li YC, Liu ZS, Gou ZX, Tang YQ, Akamatsu T, Kida K (2014) Synergistic effects of TAL1 overexpression and PHO13 deletion on the weak acid inhibition of xylose fermentation by industrial Saccharomyces cerevisiae strain. Biotechnol Lett 36:2011–2021

    Article  CAS  Google Scholar 

  31. Cai Z, Zhang B, Li Y (2011) Engineering Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: Reflections and perspectives. Biotechnol J 7:34–46

    Article  Google Scholar 

  32. Prakash G, Varma AJ, Prabhune A, Shouche Y, Rao M (2011) Microbial production of xylitol from D-xylose and sugarcane bagasse hemicelluloses using newly isolated thermotolerant yeast Debaryomyces hansenii. Bioresour Technol 102:3304–3308

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Akinori Jyo at Kumamoto University for supplying the modified anion exchange resin, DOWEX 1 × 4 SS. This work was supported financially by the Ministry of the Environment of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Kida.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 98 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, ZY., Wang, T., Tan, L. et al. Development of a more efficient process for production of fuel ethanol from bamboo. Bioprocess Biosyst Eng 38, 1033–1043 (2015). https://doi.org/10.1007/s00449-014-1345-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1345-8

Keywords

Navigation