Skip to main content
Log in

Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In this study, yeast and acetic acid bacteria strains were adopted to enhance the ethanol-type fermentation resulting to a volatile fatty acids yield of 30.22 g/L, and improve acetic acid production to 25.88 g/L, with food wastes as substrate. In contrast, only 12.81 g/L acetic acid can be obtained in the absence of strains. The parameters such as pH, oxidation reduction potential and volatile fatty acids were tested and the microbial diversity of different strains and activity of hydrolytic ferment were investigated to reveal the mechanism. The optimum pH and oxidation reduction potential for the acetic acid production were determined to be at 3.0–3.5 and −500 mV, respectively. Yeast can convert organic matters into ethanol, which is used by acetic acid bacteria to convert the organic wastes into acetic acid. The acetic acid thus obtained from food wastes micro-aerobic fermentation liquid could be extracted by distillation to get high-pure acetic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

VFA:

Volatile fatty acid

ORP:

Oxidation reduction potential

TS:

Total solid

VS:

Volatile solid

COD:

Chemical oxygen demand

References

  1. Ge Y et al (2012) Utilization technology of kitchen wastes and comparison of related treatment technology. Urban Manage Sci Tech 2:61–63

    Google Scholar 

  2. Callaghan FJ et al (1999) Co-digestion of waste organic solids: batch studies. Bioresour Technol 67(2):117–122

    Article  CAS  Google Scholar 

  3. Kim M et al (2003) Hydrolysis and acidogenesis of particulate organic material in mesophilic and thermophilic anaerobic digestion. Environ Technol 24(9):1183–1190

    Article  CAS  Google Scholar 

  4. Lata K et al (2002) Volatile fatty acid production during anaerobic mesophilic digestion of tea and vegetable market wastes. World J Microbiol Biotechnol 18(6):589–592

    Article  CAS  Google Scholar 

  5. Dong CJ et al (2005) Characteristic of anaerobic granular sludge and digestion sludge under microaerobic conditions. J Nanjing Univ Sci Technol 29(2):216–222

    CAS  Google Scholar 

  6. Sun W (2007) Yeast. Bull Biol 42(11):5–10

    Google Scholar 

  7. Tang Y et al (2008) Ethanol production from kitchen waste using the flocculating yeast Saccharomyces cerevisiae strain KF-7. Biomass Bioenergy 32(11):1037–1045

    Article  CAS  Google Scholar 

  8. Mamlouk D, Gullo M (2013) Acetic acid bacteria: physiology and carbon sources oxidation. Indian J Microbiol 53(4):377–384

    Article  CAS  Google Scholar 

  9. Matsushita K, Toyama H, Adachi O (2004) Respiratory chains in acetic acid bacteria: membrane bound periplasmic sugar and alcohol respirations. In: Zannoni D (ed) Respiration in archaea and bacteria. Advances in photosynthesis and respiration. Springer, Dordrecht, pp 81–99

    Chapter  Google Scholar 

  10. Wang L et al (2004) Studies on the nutritional properties of Acetobacter and the factors promoting acid production. China Condiment 304(6):3–6

    Google Scholar 

  11. Qin L et al (2012) High-yield production of acetic acid by mixed fermentation with yeast and acetic acid bacteria. China Brew 31(1):144–147

    CAS  Google Scholar 

  12. Habiba L et al (2009) Improvement of activated sludge stabilisation and filterability during anaerobic digestion by fruit and vegetable waste addition. Bioresour Technol 100(4):1555–1560

    Article  CAS  Google Scholar 

  13. Feng LY et al (2009) Effect of solids retention time and temperature on waste activated sludge hydrolysis and short-chain fatty acids accumulation under alkaline conditions in continuous-flow reactors. Bioresour Technol 100(1):44–49

    Article  CAS  Google Scholar 

  14. Cao X, Zhao Y (2011) Research on anaerobic hydrogen production from acidifying kitchen waste. Environ Poll Control 33(7):43–46

    CAS  Google Scholar 

  15. Zhao MX et al (2012) A comparative study of sequential hydrogen-methane and independent methane production from kitchen wastes. Energy Sources Part a-Recovery Util Environ Effects 34(11):1046–1054

    Article  CAS  Google Scholar 

  16. Cho JK et al (1995) Biochemical methane potential and solid-state anaerobic-digestion of korean food wastes. Bioresour Technol 52(3):245–253

    Article  CAS  Google Scholar 

  17. Wang QH et al (2008) Ethanol production from kitchen garbage using response surface methodology. Biochem Eng J 39(3):604–610

    Article  CAS  Google Scholar 

  18. Zhang B et al (2007) Influence of lactic acid on the two-phase anaerobic digestion of kitchen wastes. J Environ Sci-China 19(2):244–249

    Article  Google Scholar 

  19. Minale M, Worku T (2014) Anaerobic co-digestion of sanitary wastewater and kitchen solid waste for biogas and fertilizer production under ambient temperature: waste generated from condominium house. Int J Environ Sci Technol 11(2):509–516

    Article  CAS  Google Scholar 

  20. Gullo M et al (2014) Aerobic submerged fermentation by acetic acid bacteria for vinegar production: process and biotechnological aspects. Process Biochem 49(10):1571–1579

    Article  CAS  Google Scholar 

  21. APHA (1998) Standard methods for the examination of water and wastewater. Am Public Health Assoc, Washington 1268

    Google Scholar 

  22. Edwards CG et al (1999) Implication of acetic acid in the induction of slow/stuck grape juice fermentations and inhibition of yeast by Lactobacillus sp. Am J Enol Viticult 50(2):204–210

    CAS  Google Scholar 

  23. Liu CG et al (2013) Redox potential control and applications in microaerobic and anaerobic fermentations. Biotechnol Adv 31(2):257–265

    Article  CAS  Google Scholar 

  24. Zhao D et al (2003) Fermentation type and climax community controlled by pH and ORP. Chongqing Environ Sci 25(2):33–38

    CAS  Google Scholar 

  25. Ren N et al (2002) Reasons and countermeasures of propionic acid production and accumulation in anaerobic biological treatment. Sci China (Ser B) 32(1):83–89

    Google Scholar 

  26. Graves T et al (2006) Effect of pH and lactic or acetic acid on ethanol productivity by Saccharomyces cerevisiae in corn mash. J Ind Microbiol Biotechnol 33(6):469–474

    Article  CAS  Google Scholar 

  27. Wang X et al (2007) Effects of inhibitors and circumstance factors on fermentation by free or immobilized yeasts. Acta Agric Univ Jiangxiensis (Nat Sci Edn) 29(5):833–836

    CAS  Google Scholar 

  28. Liu XL et al (2008) Effects of organic matter and initial carbon-nitrogen ratio on the bioconversion of volatile fatty acids from sewage sludge. J Chem Technol Biotechnol 83(7):1049–1055

    Article  CAS  Google Scholar 

  29. Batstone DJ et al (2002) The IWA anaerobic digestion model No 1 (ADM1). Water Sci Technol 45(10):65–73

    CAS  Google Scholar 

  30. Horiuchi JI et al (2002) Selective production of organic acids in anaerobic acid reactor by pH control. Bioresour Technol 82(3):209–213

    Article  CAS  Google Scholar 

  31. Zhao Z et al (2009) Influence of yeast on anaerobic fermentation of kitchen waste for producing acetic acid. Chin J Environ Eng 3(10):1885–1888

    CAS  Google Scholar 

  32. Lu H et al (2012) The influence factors and research progress in anaerobic hydrolysis/acidification of sludge. Chemistry 75(6):489–494

    CAS  Google Scholar 

  33. Zhao D (2005) Mixed fermentment and pure-blood fermentment. China Condiment 3:3–8

    Google Scholar 

  34. Li B et al (1997) The bio-producing hydrogen ability and coordination of anaerobic active sludge and hydrogenogenic bacteria. Acta Sci Circumst 17(4):459–463

    CAS  Google Scholar 

  35. Kertes AS, King CJ (1986) Extraction chemistry of fermentation product carboxylic acids. Biotechnol Bioeng 28(2):269–282

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the National Natural Science Foundation of China (Grant No. 51278350) for the support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youcai Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., He, D., Niu, D. et al. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation. Bioprocess Biosyst Eng 38, 863–869 (2015). https://doi.org/10.1007/s00449-014-1329-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1329-8

Keywords

Navigation