Skip to main content
Log in

New strategy to apply perfluorodecalin as an oxygen carrier in lipase production: minimisation and reuse

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A novel strategy for the production of lipase by Bacillus sp. ITP-001 in a stirred tank fermenter using perfluorodecalin (PFD) was studied. Firstly, a response surface methodology 22 with three central points was employed to optimise the effect of agitation speed and aeration rate in lipase production. According to the response from the experimental designs, 300 rpm (revolutions per minute) and 0.5 vvm (air volume/liquid volume per minute) were found to provide the best condition (lipolytic activity: LA = 3,140.76 U mL−1). Then, the influence of PFD concentration on the fermentation process was evaluated. Incorporation of PFD at all concentrations above 1 % had no statistically significant influence on lipase production, that is, the previous optimisation allowed the reduction of the amount of PFD added besides increasing lipase production. Furthermore, PFD could be used in three sequential fermentations without altering the statistical production of lipase, reducing by 67 % the cost of PFD addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Treichel H, Oliveira D, Mazutti MA, Di Luccio M, Oliveira JV (2010) Food Bioprocess Tech 3:182–196

    Article  CAS  Google Scholar 

  2. Gupta R, Gupta N, Rathi P (2004) Appl Microbiol Biotechnol 64:763–781

    Article  CAS  Google Scholar 

  3. Kamini NR, Fujii T, Kurosu T, Iefuji H (2000) Process Biochem 36:317–324

    Article  CAS  Google Scholar 

  4. Ramani K, John KL, Ramakrishnan M, Sekaran G (2010) Process Biochem 45:1683–1691

    Article  CAS  Google Scholar 

  5. Aravindan R, Anbumathi P, Viruthagiri T (2007) Indian J Biotechnol 6:141–158

    CAS  Google Scholar 

  6. Liu R, Jiang X, Mou H, Guan H, Hwang HM, Li X (2009) Biochem Eng J 46:265–270

    Article  CAS  Google Scholar 

  7. Gotor-Fernández V, Brieva R, Gotor V (2006) J Mol Catal B Enzym 40:111–120

    Article  Google Scholar 

  8. Tongboriboon K, Cheirsilp B, H-Kittikun A (2010) J Mol Catal B Enzym 67:52–59

    Article  CAS  Google Scholar 

  9. Romdhane I, Fendri A, Gargouri Y, Gargouri A, Belghith H (2010) Biochem Eng J 53:112–120

    Article  Google Scholar 

  10. Feitosa IC, Barbosa JMP, Orellana SC, Lima AS, Soares CMF (2010) Acta Sci-Technol 32:27–31

    CAS  Google Scholar 

  11. Fang HHP, Liang DW, Zhang T, Liu Y (2006) Water Res 40:427–434

    Article  CAS  Google Scholar 

  12. Lima VMG, Krieger N, Mitchell DA, Fontana LD (2004) Biochem Eng J 18:65–71

    Article  CAS  Google Scholar 

  13. Guncheva M, Zhiryakova D (2011) J Mol Catal B Enzym 68:1–21

    Article  CAS  Google Scholar 

  14. Sifour M, Zaghloul TI, Saeed HM, Bereka MM, Abdel-Fattah YR (2010) New Biotechnol 27:330–336

    Article  CAS  Google Scholar 

  15. Gutarra MLE, Godoy MG, Maugeri F, Rodrigues MI, Freire DMG, Castilho LR (2009) Bioresource Technol 100:5249–5254

    Article  CAS  Google Scholar 

  16. Teng Y, Xua Y, Wang D (2009) J Mol Catal B Enzym 57:292–298

    Article  CAS  Google Scholar 

  17. Coradi GV, Visitação VL, Lima EA, Saito LYT, Palmieri DA, Takita MA, Oliva-Neto P, Lima VMG (2013) Ann Microbiol 63:533–540

    Article  CAS  Google Scholar 

  18. Gupta N, Sahai V, Gupta R (2007) Process Biochem 42:518–526

    Article  CAS  Google Scholar 

  19. Burkert JFM, Maugeri F, Rodrigues MI (2004) Bioresource Technol 91:77–84

    Article  CAS  Google Scholar 

  20. Liu CH, Chen CY, Wang YW, Chang JS (2011) Biochem Eng J 58–59:96–102

    Article  Google Scholar 

  21. Potumarthi R, Subhakar C, Vanajakshi J, Jetty A (2008) Appl Biochem Biotechnol 151:700–710

    Article  CAS  Google Scholar 

  22. Puthli MS, Rathod VK, Pandit AB (2006) Biochem Eng J 27:287–294

    Article  CAS  Google Scholar 

  23. Essamri M, Deyris V, Comeau L (1998) J Biotechnol 60:97–103

    Article  CAS  Google Scholar 

  24. Xu H, Dou W, Xu H, Zhang X, Rao Z, Shi Z, Xu Z (2009) Biochem Eng J 43:41–51

    Article  CAS  Google Scholar 

  25. Martínez I, Bennett GN, San KY (2010) Metab Eng 12:499–509

    Article  Google Scholar 

  26. Helm I, Jalukse L, Vilbaste M, Leito I (2009) Anal Chim Acta 648:167–173

    Article  CAS  Google Scholar 

  27. Song P, Chen C, Tian Q, Lin M, Huang H, Li S (2013) Biochem Eng J 71:1–10

    Article  CAS  Google Scholar 

  28. van Sonsbeek HM, Beeftink HH, Tramper J (1993) Enzyme Microb Tech 15:722–729

    Article  Google Scholar 

  29. van der Meer AB, Beenackers AACM, Burghard R, Mulder NH, Fok JJ (1992) Chem Eng Sci 47:2369–2374

    Article  Google Scholar 

  30. Dézil E, Comeau Y, Villemur R (1999) Biodegradation 10:219–233

    Article  Google Scholar 

  31. Pilarek M, Szewczyk KW (2008) Biochem Eng J 41:38–42

    Article  CAS  Google Scholar 

  32. Fraker CA, Mendez AJ, Inverardi L, Ricordi C, Stabler CL (2012) Colloid Surf B 98:26–35

    Article  CAS  Google Scholar 

  33. Amaral PFF, Freire MG, Rocha-Leão MHM, Marrucho IM, Coutinho JAP, Coelho MAZ (2008) Biotechnol Bioeng 99:588–598

    Article  CAS  Google Scholar 

  34. Lowe KC (2002) J Fluorine Chem 118:19–26

    Article  CAS  Google Scholar 

  35. Amaral PFF, Almeida APR, Peixoto T, Rocha-Leão MHM, Coutinho JAP, Coelho MAZ (2007) World J Microb Biot 23:339–344

    Article  CAS  Google Scholar 

  36. Amaral PFF, Rocha-Leão MH, Marrucho IM, Coutinho JAP, Coelho MA (2006) J Chem Technol Biotechnol 81:1368–1374

    Article  CAS  Google Scholar 

  37. Elibol M, Ozer D (2000) Process Biochem 36:325–329

    Article  Google Scholar 

  38. Dias AMA, Caço AI, Coutinho JAP, Santos LMNBF, Piñeiro MM, Vega LF, Gomes MFC, Marrucho IM (2004) Fluid Phase Equilib 225:39–47

    Article  CAS  Google Scholar 

  39. Freire DM, Teles EMF, Bon EPS, Sant’Anna GL Jr (1997) Appl Biochem Biotechnol 63–65:409–421

    Article  Google Scholar 

  40. Liu CH, Huang CC, Wanga YW, Chang JS (2012) J Taiwan Inst Chem E 43:511–516

    Article  CAS  Google Scholar 

  41. Burkert JFM, Maldonado RR, Maugieri F, Rodrigues MI (2005) J Chem Technol Biot 80:61–67

    Article  Google Scholar 

  42. Ni X, Gao S, Cumming RH, Pritchard DW (1995) Chem Eng Sci 50:2127–2136

    Article  CAS  Google Scholar 

  43. Soccol CR, Iloku I, Marin B, Roussos S, Raimbault M (1994) Food Sci Technol 3:320–323

    Google Scholar 

  44. Soares CMF, Castro HF, Moraes FF, Zanin GM (1999) Appl Biochem Biotech 79:745–758

    Article  Google Scholar 

  45. Salihu A, Alam MZ, Abdulkarim MI, Salleh HM (2011) J Mol Catal B Enzym 73:187–192

    Article  Google Scholar 

  46. Carvalho NB, Souza RL, Castro HF, Zanin GM, Lima AS, Soares CMF (2008) Appl Biochem Biotech 150:25–32

    Article  CAS  Google Scholar 

  47. Gulati R, Saxena RK, Gupta R (2000) Process Biochem 36:149–155

    Article  CAS  Google Scholar 

  48. Mahanta N, Gupta A, Khare SH (2008) Bioresour Technol 99:1729–1735

    Article  CAS  Google Scholar 

  49. Mahadik ND, Puntambekar US, Bastawde KB, Khire JM, Gokhale DV (2002) Process Biochem 38:715–721

    Article  CAS  Google Scholar 

  50. Freire MG, Dias AMA, Coelho MAZ, Coutinho JAP, Marrucho IM (2005) J Colloid Interf Sci 286:224–232

    Article  CAS  Google Scholar 

  51. Silva MTS (2013) MSc thesis, Tiradentes University, Aracaju-Sergipe, Brazil

  52. Wang SL, Yeh PY (2006) Process Biochem 41:1545–1552

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Álvaro Silva Lima.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieira, E.S., de Oliveira Fontes, T.K., Pereira, M.M. et al. New strategy to apply perfluorodecalin as an oxygen carrier in lipase production: minimisation and reuse. Bioprocess Biosyst Eng 38, 721–728 (2015). https://doi.org/10.1007/s00449-014-1312-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1312-4

Keywords

Navigation