Skip to main content
Log in

Integrated study of fermentation and downstream processing in a miniplant significantly improved the microbial 1,3-propanediol production from raw glycerol

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In this work, an integrated and optimized production process for 99 % pure 1,3-propanediol (PDO) from raw glycerol is presented. Glycerol fermentation is carried out applying a newly isolated strain Clostridium pasteurianum K1 under non-sterile conditions without any complex ingredients in the fermentation media. In this environment over 55 g/L PDO, yields of 0.52 g/g and space time yields over 2.3 g/(Lh) were achieved in up to 1 m3 pilot scale. The downstream process for PDO purification consists of an ultrafiltration for biomass and protein separation, an evaporation step for concentration of PDO and a two-step rectification for final purification. For a proof of concept, process optimization and especially investigation of interactions of individual steps, the downstream process was performed in miniplant scale. A minimum salt input into the downstream process was shown to be important to overcome precipitation in evaporation as well as rectification. Thus, raw glycerol is desalinated before fermentation and the fermentation medium was minimized and complex nutrients, such as yeast extract, were avoided totally to prevent furthermore dark color formation. Furthermore, by titration of fermentation with ammonia instead of sodium hydroxide, the later separation of the major by-products, organic acids, in the evaporation step was significantly enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ulber R, Soyez K (2004) 5000 Jahre Biotechnologie: vom Wein zum Penicillin. Chem unserer Zeit 38(3):172–180

    Article  CAS  Google Scholar 

  2. Weizmann C (1919) Production of acetone and alcohol by bacteriological processes. US patent 1315585

  3. Chiao J, Sun Z (2007) History of the acetone–butanol–ethanol fermentation industry in China: development of continuous production technology. J Mol Microbiol Biotechnol 13(1–3):12–14

    Article  CAS  Google Scholar 

  4. Soetaert W, Vandamme EJ (2010) Industrial Biotechnology. WILEY-VCH, Weinheim

    Book  Google Scholar 

  5. Hermann T (2003) Industrial production of amino acids by coryneform bacteria. J Biotech 104(1–3):155–172

    Article  CAS  Google Scholar 

  6. Lunt J (1998) Large-scale production, properties and commercial applications of polylactic acid polymers. Polym Degrad Stabil 59(1–3):145–152

    Article  CAS  Google Scholar 

  7. Sin LT, Rahmat AR, Rahman WAWA (2012) Polylactic acid: PLA biopolymer technology and applications. Elsevier, Oxford

    Google Scholar 

  8. Scholten E, Renz T, Thomas J (2009) Continuous cultivation approach for fermentative succinic acid production from crude glycerol by Basfia succiniciproducens DD1. Biotechnol Lett 31(12):1947–1951

    Article  CAS  Google Scholar 

  9. BASF SE (2012) Press release. http://www.basf.com/group/pressrelease/P-12-444

  10. BASF SE (2012) Press release. http://www.basf.com/group/pressrelease/P-12-363

  11. Kurian JV (2005) A new polymer platform for the future—Sorona from corn derived 1,3-propanediol. J Polym Environ 13(2):159–167

    Article  CAS  Google Scholar 

  12. Biebl H, Menzel K, Zeng A-P, Deckwer W-D (1999) Microbial production of 1,3-propanediol. Appl Microbiol Biotechnol 52:289–297

    Article  CAS  Google Scholar 

  13. Saxena RK, Anand P, Saran S, Isar J (2009) Microbial production of 1,3-propanediol: recent developments and emerging opportunities. Biotechnol Adv 27(6):895–913

    Article  CAS  Google Scholar 

  14. Forsberg CW (1987) Production of 1,3-propanediol from glycerol by Clostridium acetobutylicum and other Clostridium species. Appl Environ Microbiol 53(4):639–643

    CAS  Google Scholar 

  15. Xiu Z-L, Zeng A-P (2008) Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Appl Microbiol Biotechnol 78(6):917–926

    Article  CAS  Google Scholar 

  16. Zeng A-P, Biebl H (2002) Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Adv Biochem Eng Biotechnol 74:239–259

    CAS  Google Scholar 

  17. Biebl H (2001) Fermentation of glycerol by Clostridium pasteurianum—batch and continuous culture studies. J Ind Microbiol Biot 27:18–26

    Article  CAS  Google Scholar 

  18. Deckwer W-D (1995) Microbial conversion of glycerol to 1,3-propanediol. FEMS Microbiol Rev 16(2–3):143–149

    Article  CAS  Google Scholar 

  19. Willke T, Vorlop K (2008) Biotransformation of glycerol into 1,3-propanediol. Euro J Lipid Sci Tech 110(9):831–840

    Article  CAS  Google Scholar 

  20. Reimann A, Biebl H, Deckwer W-D (1998) Production of 1,3-propanediol by Clostridium butyricum in continuous culture with cell recycling. Appl Microbiol Biotechnol 49:359–363

    Article  CAS  Google Scholar 

  21. Malinowski JJ (1999) Evaluation of liquid extraction potentials for downstream separation of 1,3-propanediol. Biotechnol Tech 13:127–130

    Article  CAS  Google Scholar 

  22. Malinowski JJ (2000) Reactive extraction for downstream separation of 1,3-propanediol. Biotechnol Prog 16(1):76–79

    Article  CAS  Google Scholar 

  23. Günzel B (1991) Mikrobielle Herstellung von 1,3-Propandiol durch Clostridium butyricum und adsorptive Aufarbeitung von Diolen. Dissertation Technische Universität Braunschweig, Braunschweig

  24. Li Z, Hu T, Xiu Z (2011) Extraction of 1,3-propanediol from glycerol-based fermentation broths with methanol/phosphate aqueous two-phase system. Process Biochem 46(2):586–591

    Article  CAS  Google Scholar 

  25. Aydoğan Ö, Bayraktar E, Mehmetoğlu Ü, Kaeding T, Zeng A-P (2010) Selection and optimization of an aqueous two-phase system for the recovery of 1,3-propandiol from fermentation broth. Eng Life Sci 10(2):121–129

    Google Scholar 

  26. Grothe E (2000) Konzeption und Wirtschaftlichkeit der industriellen Glycerinvergärung zu 1,3-Propandiol. Dissertation Technische Universität Braunschweig, Braunschweig

  27. Propanergy Projektbericht (2011) Marketing concept. http://www.propanergy.eu/cms/Content/download/Deliverable6_MarketingconceptforPDO.pdf

  28. Majer S, Mueller-Langer F, Zeller V, Kaltschmitt M (2009) Implications of biodiesel production and utilisation on global climate—a literature review. Euro J Lipid Sci Tech 111(8):747–762

    Article  CAS  Google Scholar 

  29. Wilkens E, Ringel A, Hortig D, Willke T, Vorlop K-D (2012) High-level production of 1,3-propanediol from crude glycerol by Clostridium butyricum AKR102a. Appl Microbiol Biotechnol 93(3):1057–1063

    Article  CAS  Google Scholar 

  30. González-Pajuelo M, Andrade JC, Vasconcelos I (2004) Production of 1,3-propanediol by Clostridium butyricum VPI 3266 using a synthetic medium and raw glycerol. J Ind Microbiol Biotechnol 31(9):442–446

    Article  Google Scholar 

  31. Chatzifragkou A, Papanikolaou S, Dietz D, Doulgeraki A, Nychas G-J, Zeng A-P (2011) Production of 1,3-propanediol by Clostridium butyricum growing on biodiesel-derived crude glycerol through a non-sterilized fermentation process. Appl Microbiol Biotechnol 91(1):101–112

    Article  CAS  Google Scholar 

  32. Mu Y, Teng H, Zhang D-J, Wang W, Xiu Z-L (2006) Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparations. Biotechnol Lett 28(21):1755–1759

    Article  CAS  Google Scholar 

  33. Dietz D (2013) 1,3-Propanediol production from raw glycerol by mixed cultures: from laboratory to pilot plant scales. Dissertation TU Hamburg-Harburg, Hamburg

  34. Metsoviti M, Paraskevaidi K, Koutinas A, Zeng A-P, Papanikolaou S (2012) Production of 1,3-propanediol, 2,3-butanediol and ethanol by a newly isolated Klebsiella oxytoca strain growing on biodiesel-derived glycerol based media. Process Biochem 47(12):1872–1882

    Article  CAS  Google Scholar 

  35. Metsoviti M, An-Ping Zeng A-P, Koutinas AA, Papanikolaou S (2013) Enhanced 1,3-propanediol production by a newly isolated Citrobacter freundii strain cultivated on biodiesel-derived waste glycerol through sterile and non-sterile bioprocesses. J Biotech 163(4):408–418

    Article  CAS  Google Scholar 

  36. Dietz D, Zeng A-P (2013) Efficient production of 1,3-propanediol from fermentation of crude glycerol with mixed cultures in a simple medium. Bioprocess Biosyst Eng. doi:10.1007/s00449-013-0989-0

    Google Scholar 

  37. Greß D, Hartmann H, Kaibel G, Seid B (1979) Einsatz von mathematischer Simulation und Miniplant-Technik in der Verfahrensentwicklung. Chem Ing Tech 51(6):601–611

    Article  Google Scholar 

  38. Buschulte TK, Heimann F (1995) Verfahrensentwicklung durch Kombination von Prozeßsimulation und Miniplant-Technik. Chem Ing Tech 67(6):718–723

    Article  CAS  Google Scholar 

  39. Deibele L, Dohrn R (2006) Miniplant-Technik. WILEY-VCH, Weinheim

    Book  Google Scholar 

  40. Aspen Tech (2006) Aspen plus documentation

  41. Chatzifragkou A, Dietz D, Komaitis M, Zeng A-P, Papanikolaou S (2010) Effect of biodiesel-derived waste glycerol impurities on biomass and 1,3-propanediol production of Clostridium butyricum VPI 1718. Biotechnol Bioeng 107(1):76–84

    Article  CAS  Google Scholar 

  42. Taconi KA, Venkataramanan KP, Johnson DT (2009) Growth and solvent production by Clostridium pasteurianum ATCC 6013 utilizing biodiesel-derived crude glycerol as the sole carbon source. Environ Prog Sustainable Energy 28(1):100–110

    Article  CAS  Google Scholar 

  43. Sanz MT, Blanco B, Beltrán S, Cabezas JL, Coca J (2001) Vapor liquid equilibria of binary and ternary systems with water, 1,3-propanediol and glycerol. J Chem Eng Data 46(3):635–639

    Article  Google Scholar 

  44. Melin T, Rautenbach R (2007) Membranverfahren. Grundlagen der Modul- und Anlagenauslegung. Springer, Heidelberg

    Google Scholar 

Download references

Acknowledgments

The work presented here was kindly supported within the research project “PROPANERGY” in the Sevens Framework Program of the European Union (grant agreement no. 212671). We acknowledge also the support of the project partner BKW for scale-up study in their bio-pilot plant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An-Ping Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaeding, T., DaLuz, J., Kube, J. et al. Integrated study of fermentation and downstream processing in a miniplant significantly improved the microbial 1,3-propanediol production from raw glycerol. Bioprocess Biosyst Eng 38, 575–586 (2015). https://doi.org/10.1007/s00449-014-1297-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1297-z

Keywords

Navigation