Skip to main content

Advertisement

Log in

Mathematical model of adherent Vero cell growth and poliovirus production in animal component free medium

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Sabin–IPV (or sIPV, inactivated polio vaccine based on attenuated Sabin strains) is anticipated to replace the oral polio vaccine for the endgame in polio eradication. Optimization of sIPV production will lead to a better economically feasible vaccine. To assist process optimization, we studied Sabin type 1 poliovirus (PV) infection kinetics on Vero cells in controlled bioreactor vessels. The aim of our study was to develop a descriptive mathematical model able to capture the dynamics of adherent Vero cell growth and PV infection kinetics in animal component free medium. The model predicts the cell density, metabolites profiles, and viral yields in time. We found that the multiplicity of infection (MOI) and the time of infection (TOI) within the investigated range did not affect maximal PV yields, but they did affect the process time. The latter may be reduced by selecting a low TOI and a high MOI. Additionally, we present a correlation between viral titers and D-antigen, a measure for immunogenicity, of Sabin type 1 PV. The developed model is adequate for further studies of the cell metabolism and infection kinetics and may be used to identify control strategies to increase viral productivity. Increased viral yields reduce costs of polio vaccines with large implications on public health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Petiot E, Guedon E, Blanchard F, Geny C, Pinton H, Marc A (2010) Kinetic characterization of Vero cell metabolism in a serum-free batch culture process. Biotechnol Bioeng 107(1):143–153

    Article  CAS  Google Scholar 

  2. Quesney S, Marc A, Gerdil C, Gimenez C, Marvel J, Richard Y, Meignier B (2003) Kinetics and metabolic specificities of Vero cells in bioreactor cultures with serum-free medium. Cytotechnology 42(1):1–11

    Article  CAS  Google Scholar 

  3. Friesewinkel P, Niu H, Drugmand JC, Bogaerts P (2010) Simple metabolic modelling of Vero cell growth on glucose. Paper presented at the 11th International symmposium on computer applications in biotechnology, Leuven, Belgium

  4. Mendonça RZ, Arrózio SJ, Antoniazzi MM, Ferreira JMC, Pereira CA (2002) Metabolic active-high density VERO cell cultures on microcarriers following apoptosis prevention by galactose/glutamine feeding. J Biotechnol 97(1):13–22

    Article  Google Scholar 

  5. Philips BR, Aunins JG, Laska ME, Otero JM (2011) Chemical engineering perspectives on vaccine production. http://www.aiche.org/publications/cep/2011/november/chemical-engineering-perspectives-vaccine-production [accessed 01.10.2013]

  6. Duchene M, Peetermans J, D’Hondt E, Harford N, Fabry L, Stephenne J (1990) Production of poliovirus vaccines: past, present, and future. Viral Immunol 3(4):243–272

    Article  CAS  Google Scholar 

  7. Koch F, Koch G (1985) The molecular biology of poliovirus. Springer, Wien

    Book  Google Scholar 

  8. Schulze-Horsel J, Schulze M, Agalaridis G, Genzel Y, Reichl U (2009) Infection dynamics and virus-induced apoptosis in cell culture-based influenza vaccine production-Flow cytometry and mathematical modeling. Vaccine 27(20):2712–2722

    Article  CAS  Google Scholar 

  9. Licari P, Bailey JE (1992) Modeling the population dynamics of baculovirus-infected insect cells: optimizing infection strategies for enhanced recombinant protein yields. Biotechnol Bioeng 39(4):432–441

    Article  CAS  Google Scholar 

  10. Maranga L, Brazao TF, Carrondo JT (2003) Virus-like particle production at low multiplicitis of infection with the baculovirus insect cell system. Biotechnol Bioeng 84(2):245–253

    Article  CAS  Google Scholar 

  11. Mohler L, Flockerzi D, Sann H, Reichl U (2005) Mathematical model of influenza A virus production in large-scale microcarrier culture. Biotechnol Bioeng 90(1):46–58

    Article  Google Scholar 

  12. Nielsen LK (2000) Virus production from cell culture, kinetics. The encyclopedia of cell technology. Wiley, New York

    Google Scholar 

  13. Power JF, Reid S, Radford KM, Greenfield PF, Nielsen LK (1994) Modeling and optimization of the baculovirus expression vector system in batch suspension culture. Biotechnol Bioeng 44(6):710–719

    Article  CAS  Google Scholar 

  14. Wong KT, Peter CH, Greenfield PF, Reid S, Nielsen LK (1996) Low multiplicity infection of insect cells with a recombinant baculovirus: the cell yield concept. Biotechnol Bioeng 49(6):659–666

    Article  CAS  Google Scholar 

  15. Heinsbroek E, Ruitenberg EJ (2010) The global introduction of inactivated polio vaccine can circumvent the oral polio vaccine paradox. Vaccine 28(22):3778–3783

    Article  Google Scholar 

  16. Thomassen YE, van der Welle JE, van Eikenhorst G, van der Pol LA, Bakker WAM (2012) Transfer of an adherent Vero cell culture method between two different rocking motion type bioreactors with respect to cell growth and metabolic rates. Process Biochem 47(2):288–296

    Article  CAS  Google Scholar 

  17. Bakker WAM, Thomassen YE, van’t Oever AG, Westdijk J, van Oijen MGCT, Sundermann LC, van’t Veld P, Sleeman E, van Nimwegen FW, Hamidi A, Kersten GFA, van den Heuvel N, Hendriks JT, van der Pol LA (2011) Inactivated polio vaccine development for technology transfer using attenuated Sabin poliovirus strains to shift from Salk-IPV to Sabin-IPV. Vaccine 29(41):7188–7196

    Article  CAS  Google Scholar 

  18. Thomassen YE, van’t Oever AG, Vinke M, Spiekstra A, Wijffels RH, van der Pol LA, Bakker WA (2012) Scale-down of the inactivated polio vaccine production process. Biotechnol Bioeng 110(5):1354–1365

    Article  Google Scholar 

  19. ten Have R, Thomassen YE, Hamzink MR, Bakker WA, Nijst OE, Kersten G, Zomer G (2012) Development of a fast ELISA for quantifying polio D-antigen in in-process samples. Biologicals 40(1):84–87

    Article  Google Scholar 

  20. Thomassen YE, Rubingh O, Wijffels RH, van der Pol LA, Bakker WA (2014) Improved poliovirus D-antigen yields by application of different Vero cell cultivation methods. Vaccine 32(24):2782–2788

    Article  CAS  Google Scholar 

  21. Baty F, Delignette-Muller M (2004) Estimating the bacterial lag time: which model, which precision? Int J Food Microbiol 91(3):261–277

    Article  Google Scholar 

  22. Mohler L, Bock A, Reichl U (2008) Segregated mathematical model for growth of anchorage-dependent MDCK cells in microcarrier culture. Biotechnology Prog 24(1):110–119

    Article  Google Scholar 

  23. Kiparissides A, Koutinas M, Pistikopoulos EN, Mantalaris A (2010) Model Development and Analysis of Mammalian Cell Culture Systems. In: Process Systems Engineering. Wiley-VCH Verlag GmbH & Co. KGaA, pp 403–439

  24. Hassell T, Gleave S, Butler M (1991) Growth inhibition in animal cell culture. The effect of lactate and ammonia. Appl Biochem. Biotechnology 30(1):29–41

    CAS  Google Scholar 

  25. Sakagami H, Satoh M, Yokote Y, Takano H, Takahama M, Kochi M, Akahane K (1998) Amino acid utilization during cell growth and apoptosis induction. Anticancer Res 18(6A):4303–4306

    CAS  Google Scholar 

  26. Kovarova-Kovar K, Egli T (1998) Growth kinetics of suspended microbial cells: from single-substrate-controlled growth to mixed-substrate kinetics. Microbiol Mol Biol Rev 62(3):646–666

    CAS  Google Scholar 

  27. Heijnen JJ, Verheijen PJ (2013) Parameter identification of in vivo kinetic models: limitations and challenges. Biotechnol J 8(7):768–775

    Article  CAS  Google Scholar 

  28. Thomassen YE, van’t Oever AG, van Oijen MG, Wijffels RH, van der Pol LA, Bakker WA (2013) Next generation inactivated polio vaccine manufacturing to support post polio-eradication biosafety goals. PloS One 8(12):e83374

    Article  Google Scholar 

  29. WHO (2012) Recommendations to assure the quality, safety and efficacy of live attenuated poliomyelitis vaccine (oral). Replacement of TRS 904, annex 1 and addendum TRS 910, annex 1

  30. Quesney S, Marvel J, Marc A, Gerdil C, Meignier B (2000) Characterization of Vero cell growth and death in bioreactor with serum-containing and serum-free media. Cytotechnology 35:115–125

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Bella Monica for assistance in performing bioreactor experiments, Dionne David for performing the virus analysis and Alex de Haan for amino acid analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvonne E. Thomassen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ursache, R.V., Thomassen, Y.E., van Eikenhorst, G. et al. Mathematical model of adherent Vero cell growth and poliovirus production in animal component free medium. Bioprocess Biosyst Eng 38, 543–555 (2015). https://doi.org/10.1007/s00449-014-1294-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1294-2

Keywords

Navigation