Skip to main content
Log in

Biosynthesis of high-purity γ-MnS nanoparticle by newly isolated Clostridiaceae sp. and its properties characterization

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

MnS is a p-type semiconductor with both antiferromagnetism and wide band gap, endowing it potential applications for short wavelength optoelectronic devices, solar cells and luminescent materials. Despite successful biosynthesis of nano CdS, PbS and ZnS with extremely low solubility product, there have been no reports available on biosynthesis of nano MnS so far because both PO4 3− and OH negatively disturb reaction between Mn2+ and S2− through forming Mn3(PO4)2 and Mn(OH)2 as undesirable impurities. In this work, high-purity MnS nanocrystals were synthesized in presence of newly isolated Clostridiaceae sp. through strictly controlling pH value and PO4 3− dose for the first time. The results showed that hexagonal-shaped γ-MnS with a diameter of 2–3 μm and a thickness of 200–300 nm was obtained by biosynthesis at 0.014 g/L PO4 3− dose and pH 5.8. The hexagonal-shaped particle possessed dense and uniform texture. The γ-MnS had an obvious absorption peak at 325 nm and an emission peak at 435 nm as well as paramagnetic property with a coercivity of 52.91 Oe and a retentivity of 4.37 × 10−3 emu/g at ambient temperature. The studies demonstrated that biosynthesis was qualified for preparation of nano metal sulfites with relatively high solubility product like MnS, widening its application spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lee JH, Kim MG, Yoo B, Myung NV, Maeng J, Lee T, Dohnalkova AC, Fredrickson JK, Sadowsky MJ, Hur HG (2007) Biogenic formation of photoactive arsenic-sulfide nanotubes by Shewanella sp. strain HN-41. Proc Natl Acad Sci USA 104:20410–20415

    Article  CAS  Google Scholar 

  2. Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492

    Article  CAS  Google Scholar 

  3. Krumov N, Perner-Nochta I, Oder S, Gotcheva V, Angelov A, Posten C (2009) Production of inorganic nanoparticles by microorganisms. Chem Eng Technol 32:1026–1035

    Article  CAS  Google Scholar 

  4. Faramarzi MA, Sadighi A (2013) Insights into biogenic and chemical production of inorganic nanomaterials and nanostructures. Adv Colloid Interface Sci 189–190:1–20

    Article  Google Scholar 

  5. Dameron C, Reese R, Mehra R, Kortan A, Carroll P, Steigerwald M, Brus L, Winge D (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338:596–597

    Article  CAS  Google Scholar 

  6. Labrenz M, Druschel GK, Thomsen-Ebert T, Gilbert B, Welch SA, Kemner KM, Logan GA, Summons RE, Stasio GD, Bond PL, Lai B, Kelly SD, Banfield JF (2000) Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290:1744–1747

    Article  CAS  Google Scholar 

  7. Kumar SA, Ansary AA, Ahmad A, Khan MI (2007) Extracellular biosynthesis of CdSe quantum dots by the fungus, Fusarium Oxysporum. J Biomed Nanotechnol 3:190–194

    Article  CAS  Google Scholar 

  8. Bharde AA, Parikh RY, Baidakova M, Jouen S, Hannoyer B, Enoki T, Prasad B, Shouche YS, Ogale S, Sastry M (2008) Bacteria-mediated precursor-dependent biosynthesis of superparamagnetic iron oxide and iron sulfide nanoparticles. Langmuir 24:5787–5794

    Article  CAS  Google Scholar 

  9. Bao H, Hao N, Yang Y, Zhao D (2010) Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells. Nano Res 3:481–489

    Article  CAS  Google Scholar 

  10. Yang X, Wang Y, Sui Y, Huang X, Cui T, Wang C, Liu B, Zou G, Zou B (2012) Size-controlled synthesis of bifunctional magnetic and ultraviolet optical rock-salt MnS nanocube superlattices. Langmuir 28:17811–17816

    Article  CAS  Google Scholar 

  11. Ikeue K, Shiiba S, Machida M (2009) Novel visible-light-driven photocatalyst based on Mn−Cd−S for efficient H2 evolution. Chem Mater 22:743–745

    Article  Google Scholar 

  12. Cheng Y, Wang Y, Jia C, Bao F (2006) MnS hierarchical hollow spheres with novel shell structure. J Phys Chem B 110:24399–24402

    Article  CAS  Google Scholar 

  13. Zhao P, Zeng Q, He X, Tang H, Huang K (2008) Preparation of γ-MnS hollow spheres consisting of cones by a hydrothermal method. J Cryst Growth 310:4268–4272

    Article  CAS  Google Scholar 

  14. Biswas S, Kar S, Chaudhuri S (2005) Solvothermal synthesis of α-MnS single crystals. J Cryst Growth 284:129–135

    Article  CAS  Google Scholar 

  15. Fan D, Yang X, Wang H, Zhang Y, Yan H (2003) Photoluminescence of MnS thin film prepared by chemical bath deposition. Phys B 337:165–169

    Article  CAS  Google Scholar 

  16. Mayén-Hernández SA, Jiménez-Sandoval S, Castanedo-Pérez R, Torres-Delgado G, Chao BS, Jiménez-Sandoval O (2003) Preparation and characterization of polycrystalline MnS thin films by the RF-sputtering technique above room temperature. J Cryst Growth 256:12–19

    Article  Google Scholar 

  17. Zheng Y, Cheng Y, Wang Y, Zhou L, Bao F, Jia C (2006) Metastable γ-MnS hierarchical architectures: synthesis, characterization, and growth mechanism. J Phys Chem B 110:8284–8288

    Article  CAS  Google Scholar 

  18. Zhang Y, Zhang Z, Wang S, Ma X, Qian Y (2006) Synthesis and characterization of α-MnS polyhedrons and spheres. Mater Chem Phys 97:365–370

    Article  CAS  Google Scholar 

  19. Lu J, Qi P, Peng Y, Meng Z, Yang Z, Yu W, Qian Y (2001) Metastable MnS crystallites through solvothermal synthesis. Chem Mater 13:2169–2172

    Article  CAS  Google Scholar 

  20. Wang Z, Tao F, Pan F, Sun Y, Cai W, Yao L (2011) Self-assembled MnS flower-like hierarchical architectures on porous alumina membrane. Appl Surf Sci 258:44–49

    Article  CAS  Google Scholar 

  21. Xin B, Huang Q, Chen S, Tang X (2008) High-purity nano particles ZnS production by a simple coupling reaction process of biological reduction and chemical precipitation mediated with EDTA. Biotechnol Prog 24:1171–1177

    Article  CAS  Google Scholar 

  22. Bai HJ, Zhang ZM, Guo Y, Yang GE (2009) Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloids Surf B 70:142–146

    Article  CAS  Google Scholar 

  23. Mi C, Wang Y, Zhang J, Huang H, Xu L, Wang S, Fang X, Fang J, Mao C, Xu S (2011) Biosynthesis and characterization of CdS quantum dots in genetically engineered Escherichia coli. J Biotechnol 153:125–132

    Article  CAS  Google Scholar 

  24. Kowshik M, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002) Microbial synthesis of semiconductor PbS nanocrystallites. Adv Mater 14:815–818

  25. Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  Google Scholar 

  26. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  Google Scholar 

  27. Madigan MT, Martinko JM, Parker J (1997) In Brock biology of microorganisms. Prentice Hall, Inc., Upper Saddle River, pp 532–605

    Google Scholar 

  28. Kim T, Park H, Lee M, Lee S, Song H (2012) Restricted growth of LiMnPO4 nanoparticles evolved from a precursor seed. J Power Sources 210:1–6

    Article  CAS  Google Scholar 

  29. Li H, Fu B (2007) Practical Handbook of Chemistry (Chinese), chapter 9, Chemical Industry Press, Beijing

  30. Shi Y, Xue F, Li C, Zhao Q, Qu Z (2011) Preparation and hydrothermal annealing of pure metastable β-MnS thin films by chemical bath deposition (CBD). Mater Res Bull 46:483–486

    Article  CAS  Google Scholar 

  31. Jun YW, Jung YY, Cheon J (2002) Architectural control of magnetic semiconductor nanocrystals. J Am Chem Soc 124:615–619

    Article  CAS  Google Scholar 

  32. Peng L, Shen S, Zhang Y, Xu H, Wang Q (2012) Controllable synthesis of MnS nanocrystals from a single-source precursor. J Colloid Interface Sci 377:13–17

    Article  CAS  Google Scholar 

  33. Pandey G, Sharma HK, Srivastava SK, Kotnala RK (2011) γ-MnS nano and micro architectures: synthesis, characterization and optical properties. Mater Res Bull 46:1804–1810

    Article  CAS  Google Scholar 

  34. Liu M, Shan N, Chen L, Li X, Li B, You W (2012) A mild l-cystine-assisted hydrothermal route to metastable γ-MnS multipods. Appl Surf Sci 258:7922–7927

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We highly appreciate financial support from the National Natural Science Foundation of China (Grant No. 21277012) and Shandong Fund of Sciences and Technology for Environment Protection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoping Xin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Wang, J., Yue, L. et al. Biosynthesis of high-purity γ-MnS nanoparticle by newly isolated Clostridiaceae sp. and its properties characterization. Bioprocess Biosyst Eng 38, 219–227 (2015). https://doi.org/10.1007/s00449-014-1261-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1261-y

Keywords

Navigation