Skip to main content
Log in

Biokinetic evaluation of fatty acids degradation in microbial fuel cell type bioreactors

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Biodegradations of Na-lactate and Na-acetate were evaluated in microbial fuel cell (MFC) type bioreactors. Increase in lactate concentration from 1,000 to 5,000 mg L−1 enhanced the biodegradation rate from 4.6 to 23.9 mg L−1 h−1. Sequential batch operation of MFC enhanced the lactate biodegradation rate. With acetate, neither increase in concentration nor sequential operation had a marked effect. Maximum power and current densities in MFCs operated batch-wise with lactate and acetate were 3.30 and 2.28 mW m−2, and 48.2 and 40.2 mA m−2, respectively. In the MFC operated continuously, increase in lactate loading rate caused the biodegradation rate to pass through maximum value of 1,668.2 mg L−1 h−1 (residence time: 1.2 h). Open circuit potential, power and current densities for continuous operation were 700 mV, 8.10 mW m−2 and 43.0 mA m−2, respectively. Using the experimental data, kinetic models for microbial growth and biodegradation of lactate and acetate in the MFC were developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

X :

Biomass concentration (mg L−1)

t :

Time (h)

µ max–Lac :

Maximum specific growth rate, lactate degradation (h−1)

µ max–Ace :

Maximum specific growth rate, acetate degradation (h−1)

S Lac :

Lactate ion concentration (mg L−1)

S Ace :

Acetate ion concentration (mg L−1)

K s–Lac :

Saturation constant for lactate degradation (mg Lac L−1)

K s–Ace :

Saturation constant for acetate degradation (mg Ace L−1)

K d–Lac :

Endogenous decay coefficient for lactate degradation (h−1)

K d–Ace :

Endogenous decay coefficient for acetate degradation (h−1)

Y x–Lac :

Yield constant for lactate degradation [mg cell-dry weight (mg Lac)−1]

Y x–Ace :

Yield constant for acetate degradation [mg cell-dry weight (mg Ace)−1]

R :

Ratio of residual to initial lactate concentrations

F :

Proportion of reactions involved in lactate degradation (complete vs. incomplete oxidations)

References

  1. Angenent LT, Karim K, AL-Dahhan MH, Wrenn BA, Dominguez-Espinosa R (2004) Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trend Biotechnol 22:477–485

    Article  CAS  Google Scholar 

  2. Du Z, Li H, Gu T (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25:464–482

    Article  CAS  Google Scholar 

  3. Pant D, Van Bogaert G, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101:1533–1543

    Article  CAS  Google Scholar 

  4. Rabaey K, Van de Sompel K, Maignien L, Boon N, Aelterman P, Clauwaert P, De Schamphelaire L, Pham TH, Vermuelen J, Verhaege M, Lens P, Verstraete W (2006) Microbial fuel cells for sulfide removal. Environ Sci Technol 40:5218–5224

    Article  CAS  Google Scholar 

  5. Park DH, Zeikus JG (2000) Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl Environ Microbiol 66:1292–1297

    Article  CAS  Google Scholar 

  6. Puig S, Serra M, Coma M, Cabre M, Balaguer MD, Colprim J (2010) Effect of pH on nutrient dynamics and electricity production using microbial fuel cells. Bioresour Technol 101:9594–9599

    Article  CAS  Google Scholar 

  7. Lovley DR, Philips EJ, Lonergan DJ (1989) Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens. App Environ Microbiol 55:700–706

    CAS  Google Scholar 

  8. Call DF, Logan BE (2011) Lactate oxidation coupled to iron or electrode reduction by Geobacter sulfurreducens PCA. Appl Environ Microbiol 77:8791–8794

    Article  CAS  Google Scholar 

  9. Feng C, Li F, Sun K, Liu Y, Liu L, Yue X, Tong H (2011) Understanding the role of Fe(III)/Fe(II) couple in mediating reductive transformation of 2-nitrophenol in microbial fuel cells. Bioresour Technol 102:1131–1136

    Article  CAS  Google Scholar 

  10. Rhoads A, Beyenal H, Lewandowski Z (2005) Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ Sci Technol 39:4666–4671

    Article  CAS  Google Scholar 

  11. Kim HJ, Park HS, Hyun MS, Chang IS, Kim M, Kim BH (2002) A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzym Microb Technol 30:145–152

    Article  CAS  Google Scholar 

  12. Bretschger O, Cheung ACM, Mansfeld F, Nealson KH (2009) Comparative microbial fuel cell evaluations of Shewanella spp. Electroanalysis 22:883–894

    Article  Google Scholar 

  13. Manohar AK, Mansfeld F (2009) The internal resistance of a microbial fuel cell and its dependence on cell design and operating conditions. Electrochim Acta 54:1664–1670

    Article  CAS  Google Scholar 

  14. Min B, Cheng S, Logan BE (2004) Electricity generation using membrane and salt bridge microbial fuel cells. Water Res 39:1675–1686

    Article  Google Scholar 

  15. Dr Bond, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555

    Article  Google Scholar 

  16. Liu H, Cheng S, Logan BE (2005) Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol 39:658–662

    Article  CAS  Google Scholar 

  17. Gregory KB, Bond DR, Lovley DR (2004) Graphite electrodes as electron donors for anaerobic respiration. Environ Microbiol 6:596–604

    Article  CAS  Google Scholar 

  18. He Z, Angenent LT (2006) Application of bacterial biocathodes in microbial fuel cells. Electroanalysis 18:2009–2015

    Article  CAS  Google Scholar 

  19. Clauwaert P, Rabaey K, Aelterman P, De Schamphelaire L, Pham TH, Boeckx P, Boon N, Verstraete W (2007) Biological denitrification in microbial fuel cells. Environ Sci Technol 41:3354–3360

    Article  CAS  Google Scholar 

  20. Virdis B, Rabaey K, Rozendal RA, Yuan Z, Keller J (2010) Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells. Water Res 44:2970–2980

    Article  CAS  Google Scholar 

  21. Puig S, Coma M, Desloover J, Boon N, Colprim J, Balaguer MD (2012) Autotrophic denitrification in microbial fuel cells treating low ionic strength waters. Environ Sci Technol 46:2309–2315

    Article  CAS  Google Scholar 

  22. Su W, Zhang L, Tao Y, Zhan G, Li D, Li D (2012) Sulfate reduction with electrons directly derived from electrodes in bioelectrochemical systems. Electrochem Commun 22:37–40

    Article  Google Scholar 

  23. Coma M, Puig S, Pous N, Balaguer MD, Colprim J (2012) Biocatalysed sulphate removal in a BES cathode. Bioresour Technol 130:218–223

    Article  Google Scholar 

  24. Sevda S, Dominguez-Benetton X, Vanbroekhoven K, De Wever H, Sreekrishnan TR, Pant D (2013) High strength wastewater treatment accompanied by power generation using air cathode microbial fuel cell. Appl Energy 105:194–206

    Article  CAS  Google Scholar 

  25. Malaeb L, Katuri KP, Logan BE, Maab H, Nunes SP, Saikaly PE (2013) A hybrid microbial fuel cell membrane bioreactor with conductive ultrafiltration membrane biocathode for wastewater treatment. Environ Sci Technol 47:11821–11828

    Article  CAS  Google Scholar 

  26. Zhang F, Ge Z, Grimaud J, Hurst J, He Z (2013) Long-term performance of liter-scale microbial fuel cells treating primary effluent installed in a municipal wastewater treatment facility. Environ Sci Technol 47:4941–4948

    Article  CAS  Google Scholar 

  27. Li X, Zhu N, Wang Y, Li P, Wu P, Wu J (2013) Animal carcass wastewater treatment and bioelectricity generation in up-flow tubular microbial fuel cells: effects of HRT and non-precious metallic catalyst. Bioresour Technol 128:454–460

    Article  CAS  Google Scholar 

  28. Karra U, Troop E, Curtis M, Scheible K, Tenaglier C, Patel N, Li B (2013) Performance of plug flow microbial fuel cell (PC-MFC) and complete mixing microbial fuel cell (CM-MFC) for wastewater treatment and power generation. Int J Hydrogen Energy 38:5383–5388

    Article  CAS  Google Scholar 

  29. ElMekawy A, Diels L, De Wever H, Pant D (2013) Valorization of cereal based biorefinery byproducts: reality and expectations. Environ Sci Technol 47:9014–9027

    Article  CAS  Google Scholar 

  30. Logan BE (2008) Microbial fuel cells. Wiley, New York

    Google Scholar 

  31. Marcus AK, Torres CI, Rittmann BE (2007) Conduction-based modeling of the biofilm anode of a microbial fuel cell. Biotechnol Bioeng 98:1171–1182

    Article  CAS  Google Scholar 

  32. Hamelers HVM, Heijne AT, Stein N, Rozendal RA, Buisman CJN (2011) Butler–Volmer–Monod model for describing bio-anode polarization curves. Bioresour Technol 102:381–387

    Article  CAS  Google Scholar 

  33. Picioreanu C, Head IM, Katuri K, van Loosdrecht MCM, Scott K (2007) A computational model for biofilm-based microbial fuel cells. Water Res 41:2921–2940

    Article  CAS  Google Scholar 

  34. An S, Stone H, Nemati M (2011) Biological removal of nitrate by an oil reservoir culture capable of autotrophic and heterotrophic activities: kinetic evaluation and modeling of heterotrophic process. J Hazard Mater 190:686–693

    Article  CAS  Google Scholar 

  35. An S, Loden B, Nemati M (2012) Evaluation of heterotrophic nitrite removal by a sulphide and acetate oxidizing mixed culture originated from an oil reservoir. J Chem Technol Biotechnol 87:410–417

    Article  CAS  Google Scholar 

  36. You SJ, Zhao QL, Jiang JQ, Zhang JN, Zhao SQ (2006) Sustainable approach for leachate treatment: electricity generation in microbial fuel cell. J Environ Sci Health A 41:2721–2734

    Article  CAS  Google Scholar 

  37. Rabus R, Hansen TA, Widdel F (2006) Dissimilatory sulfate- and sulfur-reducing. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes, 3rd edn. Springer, New York

    Google Scholar 

  38. Reardon KF, Mosteller DC, Bull-Rogers JD (2000) Biodegradation kinetics of benzene, toluene and phenol as single and mixed substrates for Pseudomonas putida F1. Biotechnol Bioeng 69:387–400

    Google Scholar 

  39. Abuhamed T, Bayraktar E, Mehmetoglu T, Mehmetoglu U (2003) Kinetics model for growth of Pseudomonas putida F1 during benzene, toluene and phenol biodegradation. Process Biochem 39:983–988

    Article  Google Scholar 

  40. Juang RS, Tsai SY (2006) Growth kinetics of Pseudomonas putida in the biodegradation of single and mixed phenol and sodium salicylate. Biochem Eng J 31:133–140

    Article  CAS  Google Scholar 

  41. Koike I, Hattori A (1975) Energy yield of denitrification: an estimate from growth yield in continuous cultures of Pseudomonas denitrificans under nitrate-, nitrite- and nitrous oxide-limited conditions. J Gen Microbiol 88:11–19

    Article  CAS  Google Scholar 

  42. Kornaros M, Lyberatos G (1998) Kinetic modelling of Pseudomonas denitrificans growth and denitrification under aerobic, anoxic and transient operating conditions. Water Res 32:1912–1922

    Article  CAS  Google Scholar 

  43. Pant D, Arslan D, Van Bogaert G, Gallego YA, De Wever H, Diels L, Vanbroekhoven K (2013) Integrated conversion of food waste diluted with sewage into volatile fatty acids through fermentation and electricity through a fuel cell. Environ Technol 34:1935–1945

    Article  CAS  Google Scholar 

  44. El Mekawy A, Srikanth S, Vanbroekhoven K, De Wever H, Pant D (2014) Bioelectro-catalytic valorization of dark fermentation effluents by acetate oxidizing bacteria in bioelectrochemical system (BES). J Power Sources 262:183–191

Download references

Acknowledgments

This work was made possible by the financial support of the Saskatchewan Ministry of Agriculture (Agriculture Development Fund) and a Discovery Grant provided to MN by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Nemati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno, L., Nemati, M. & Predicala, B. Biokinetic evaluation of fatty acids degradation in microbial fuel cell type bioreactors. Bioprocess Biosyst Eng 38, 25–38 (2015). https://doi.org/10.1007/s00449-014-1240-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1240-3

Keywords

Navigation