Skip to main content
Log in

Multiplying steady-state culture in multi-reactor system

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Cultivation of microorganisms in batch experiments is fast and economical but the conditions therein change constantly, rendering quantitative data interpretation difficult. By using chemostat with controlled environmental conditions the physiological state of microorganisms is fixed; however, the unavoidable stabilization phase makes continuous methods resource consuming. Material can be spared by using micro scale devices, which however have limited analysis and process control capabilities. Described herein are a method and a system combining the high throughput of batch with the controlled environment of continuous cultivations. Microorganisms were prepared in one bioreactor followed by culture distribution into a network of bioreactors and continuation of independent steady state experiments therein. Accelerostat cultivation with statistical analysis of growth parameters demonstrated non-compromised physiological state following distribution, thus the method effectively multiplied steady state culture of microorganisms. The theoretical efficiency of the system was evaluated in inhibitory compound analysis using repeated chemostat to chemostat transfers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bull AT (2010) The renaissance of continuous culture in the post-genomics age. J Ind Microbiol Biotechnol 37:993–1021

    Article  CAS  Google Scholar 

  2. Hoskisson PA, Hobbs G (2005) Continuous culture—making a comeback? Microbiology 151:3153–3159

    Article  CAS  Google Scholar 

  3. Malek I (1976) Physiological state of continuously grown microbial cultures. In: Dean ACR, Ellwood DC, Evans CGT, Melling J (eds) Continuous culture 6: applications and new fields. pp 1–9

  4. Novick A, Szilard L (1950) Description of the chemostat. Science 112:715–716

    Article  CAS  Google Scholar 

  5. Wick LM, Weilenmann H, Egli T (2002) The apparent clock-like evolution of Escherichia coli in glucose-limited chemostats is reproducible at large but not at small population sizes and can be explained with Monod kinetics. Microbiology 148:2889–2902

    CAS  Google Scholar 

  6. Ferenci T (2006) A cultural divide on the use of chemostats. Microbiology 152:1247–1248

    Article  CAS  Google Scholar 

  7. Paalme T, Kahru A, Elken R et al (1995) The computer-controlled continuous culture of Escherichia coli with smooth change of dilution rate (A-stat). J Microbiol Methods 24:145–153

    Article  Google Scholar 

  8. Kasemets K, Drews M, Nisamedtinov I, Adamberg K, Paalme T (2003) Modification of A-stat for the characterization of microorganisms. J Microbiol Methods 55:187–200

    Article  CAS  Google Scholar 

  9. Adamberg K, Lahtvee PJ, Valgepea K, Abner K, Vilu R (2009) Quasi steady state growth of Lactococcus lactis in glucose-limited acceleration stat (A-stat) cultures. Antonie van Leeuwenhoek 95:219–226

    Article  Google Scholar 

  10. Dunn IJ, Mor JR (1975) Variable-volume continuous cultivation. Biotechnol Bioeng 17:1805–1822

    Article  Google Scholar 

  11. Paalme T, Tiisma K, Kahru A, Vanatalu K, Vilu R (1990) Glucose-limited fed-batch cultivation of Escherichia coli with computer-controlled fixed growth rate. Biotechnol Bioeng 35:312–319

    Article  CAS  Google Scholar 

  12. Levenspiel O (1998) Chemical reaction engineering, 3rd edn. ISBN:978-0-471-25424-9

  13. Blount ZD, Borland CZ, Lenski RE (2008) Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proc Natl Acad Sci USA 105:7899–7906

    Article  CAS  Google Scholar 

  14. Fricke J, Pohlmann K, Tatge F, Lang R, Faber B, Luttmann R (2011) A multi-bioreactor system for optimal production of malaria vaccines with Pichia pastoris. Biotechnol J 6:437–451

    Article  CAS  Google Scholar 

  15. Lueders S, Fallet C, Franco-Lara E (2009) Proteome analysis of the Escherichia coli heat shock response under steady-state conditions. Proteome Sci 7:36

    Article  Google Scholar 

  16. Lara AR, Taymaz-Nikerel H, Mashego MR, van Gulik WM, Heijnen JJ, Ramírez OT, van Winden WA (2009) Fast dynamic response of the fermentative metabolism of Escherichia coli to aerobic and anaerobic glucose pulses. Biotechnol Bioeng 104:1153–1161

    Article  CAS  Google Scholar 

  17. Nahku R, Valgepea K, Lahtvee PJ, Erm S, Abner K, Adamberg K, Vilu R (2009) Specific growth rate dependent transcriptome profiling of Escherichia coli K12 MG1655 in accelerostat cultures. J Biotechnol 145:60–65

    Article  Google Scholar 

  18. Valgepea K, Adamberg K, Vilu R (2011) Decrease of energy spilling in Escherichia coli continuous cultures with rising specific growth rate and carbon wasting. BMC Syst Biol 5:106

    Article  CAS  Google Scholar 

  19. Dénervaud N, Becker J, Delgado-Gonzalo R, Damay P, Rajkumar AR, Unser M, Shore D, Naef F, Maerkl SJ (2013) A chemostat array enables the spatio-temporal analysis of the yeast proteome. Proc Natl Acad Sci USA 110(39):15842–15847

    Article  Google Scholar 

  20. Nahku R, Peebo K, Valgepea K, Barrick JE, Adamberg K, Vilu R (2011) Stock culture heterogeneity rather than new mutational variation complicates short-term cell physiology studies of Escherichia coli K-12 MG1655 in continuous culture. Microbiology 157:1204–1210

    Article  Google Scholar 

Download references

Acknowledgments

The financial support for this work was provided by the European Regional Development Fund project EU29994; Ministry of Education, Estonia, through the grant IUT1927 and Estonian Science Foundation through grant G9192.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sten Erm.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 62 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erm, S., Adamberg, K. & Vilu, R. Multiplying steady-state culture in multi-reactor system. Bioprocess Biosyst Eng 37, 2361–2370 (2014). https://doi.org/10.1007/s00449-014-1214-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1214-5

Keywords

Navigation