Skip to main content
Log in

Effect of visible light on catalytic hydrolysis of p-nitrophenyl palmitate by the Pseudomonas cepacia lipase immobilized on sol–gel support

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This paper demonstrates Pseudomonas cepacia lipase catalyzed hydrolysis of p-nitrophenyl palmitate under irradiation of light with wavelengths of 250–750 nm. The reaction follows Michaelis–Menten Kinetics and the light irradiation increases the overall rate of hydrolysis. Using Lineweaver–Burk plot K M and V max values for the reaction in presence of light are found to be 39.07 and 66.67 mM/min/g, respectively; while for the same reaction under dark condition, the values are 7.08 and 10.21 mM/min/g. The linear form of enzyme dependent rate of reaction confirms that no mass-transfer limitations are present and the reaction is a kinetically controlled enzymatic reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1

Similar content being viewed by others

References

  1. Joseph B, Ramteke PW, Thomas G (2008) Cold active microbial lipases: some hot issues and recent developments. Biotechnol Adv 26:457–470

    Article  CAS  Google Scholar 

  2. Gutierrez CA, Carelli AA, Ferreira ML (2007) Relation between lipase structures and their catalytic ability to hydrolyse triglycerides and phospholipids. Enzym Microb Technol 41:35–43

    Article  Google Scholar 

  3. Bana K, Hamab S, Nishizuka K, Kaieda M, Matsumoto T, Kondo A (2002) Repeated use of whole-cell biocatalysts immobilized within biomass support particles for biodiesel fuel production. J Mol Catal B Enzym 17:157–165

    Article  Google Scholar 

  4. Marıa PD, Sanchez JM, Sinisterra JV, Alcantara AR (2006) Understanding Candida rugosa lipases: an overview. Biotechnol Adv 24:180–196

    Article  Google Scholar 

  5. Saxena RK, Sheoran A, Giri B, Davidson WS (2003) Purification strategies for microbial lipases. J Microbiol Methods 52:1–18

    Article  CAS  Google Scholar 

  6. Murthy V, Julien P, Gagne C (1996) Molecular pathobiology of the human lipoprotein lipase gene. Pharmacol Ther 70:101–135

    Article  CAS  Google Scholar 

  7. Soumanou M, Bornscheuer UT (2003) Improvement in lipase-catalyzed synthesis of fatty acid methyl esters from sunflower oil. Enzym Microb Technol 33:97–103

    Article  CAS  Google Scholar 

  8. Iso M, Chen B, Eguchi M, Kudo T, Shrestha S (2001) Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase. J Mol Catal B Enzym 16:53–58

    Article  CAS  Google Scholar 

  9. Xu Y, Du W, Zeng J, Liu D (2004) Conversion of soybean oil to biodiesel fuel using lipozyme TL IM in a solvent-free medium. Biocatal Biotransform 22:45–48

    Article  CAS  Google Scholar 

  10. Dossat V, Combes D, Marty A (2002) Efficient lipase catalysed production of a lubricant and surfactant formulation using a continuous solvent-free process. J Biotechnol 97:117–124

    Article  CAS  Google Scholar 

  11. Purec L, Krasna AI (1967) The activation of the hydrogenase of proteus vulgaris by visible light. Proceedings of the National Academy Sciences of the USA 57:1416–142

  12. Fenyo M (1984) Theoretical and experimental basis of biostimulation. Opt Laser Technol 16:209–215

    Article  Google Scholar 

  13. Fiedorowicz M, Chaczatrian G (2003) Effect of illumination with the visible polarized and non-polarized light on R-amylolysis of starches of different botanical origin. J Agric Food Chem 51:7815–7819

    Article  CAS  Google Scholar 

  14. Kertesz I, Fenyo M, Mester E, Bathori G (1982) Hypothetical physical model for laser biostimulation. Opt Laser Technol 14:31–32

    Article  CAS  Google Scholar 

  15. Kordel M, Hofrnam B, Schomburg D, Schmid RD (1991) Extracellular lipase of Pseudomonas sp. strain ATCC-21808, purification, characterization, crystallization, and preliminary X-ray diffraction data. J Bacteriol 173:4836–4841

    CAS  Google Scholar 

  16. Pencreac’h G, Baratti C (1996) Hydrolysis of p-nitrophenyl palmitate in n-heptane by the Pseudomonas cepacia lipase: a simple test for the determination of lipase activity in organic media. Enzym Microb Technol 18:417–422

    Article  Google Scholar 

  17. Kyeong KK, Hyun KS, Dong HS, Kwang YH, Se WS (1997) The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor. Structure 5:173–185

    Article  Google Scholar 

  18. Bruno LA, Pinto GAS, Catro HF, Filho JL, Mclo EHM (2004) Variables that affect immobilization of Mucor Miehei lipase on nylon membrane. World J Microbiol Biotechnol 20:371–375

    Article  CAS  Google Scholar 

  19. Jeremy MB, John LT, Lubert S (2010) Biochemistry. W.H Freeman, New York

  20. Carnahan B, Luther HA, Wilkes JO (1969) Applied numerical methods. Wiley, New York

Download references

Acknowledgments

The authors gratefully thank to Ministry of Education, Malaysia and Universiti Malaysia Pahang for financial support through GRS 120347.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maksudur Rahman Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganasen, P., Khan, M.R., Kalam, M.A. et al. Effect of visible light on catalytic hydrolysis of p-nitrophenyl palmitate by the Pseudomonas cepacia lipase immobilized on sol–gel support. Bioprocess Biosyst Eng 37, 2353–2359 (2014). https://doi.org/10.1007/s00449-014-1213-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1213-6

Keywords

Navigation