Skip to main content
Log in

An integrative process of bioconversion of oil palm empty fruit bunch fiber to ethanol with on-site cellulase production

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The aim of this study was to efficiently convert oil palm empty fruit bunch fiber (OPEFB), one of the most commonly generated lingo-wastes in Southeast Asia, into both cellulase and bioethanol. The unprocessed cellulase crude (37.29 %) produced under solid-state fermentation using OPEFB as substrate showed a better reducing sugar yield using filter paper than the commercial enzyme blend (34.61 %). Organosolv pretreatment method could efficiently reduce hemicellulose (24.3–18.6 %) and lignin (35.2–22.1 %) content and increase cellulose content (40.5–59.3 %) from OPEFB. Enzymatic hydrolysis of pretreated OPEFB using the crude cellulase with 20 % solid content, enzyme loading of 15 FPU/g OPEFB at 50 °C, and pH 5.5 resulted in a OPEFB hydrolysate containing 36.01 g/L glucose after 72 h. Fermentation of the hydrolysate medium produced 17.64 g/L ethanol with 0.49 g/g yield from glucose and 0.088 g/g yield from OPEFB at 8 h using Saccharomyces cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gnansounou E, Dauriat A (2010) Techno-economic analysis of lignocellulosic ethanol: a review. Bioresour Technol 101:4980–4991

    Article  CAS  Google Scholar 

  2. Ariffin H, Hassan MA, Shah UK, Abdullah N, Ghazali FM, Shirai Y (2008) Production of bacterial endoglucanase from pretreated oil palm empty fruit bunch by Bacillus pumilus EB3. J Biosci Bioeng 106:231–236

    Article  CAS  Google Scholar 

  3. Yunus R, Salleh SF, Abdullah N, Biak DR (2010) Effect of ultrasonic pretreatment on low temperature acid hydrolysis of oil palm empty fruit bunch. Bioresour Technol 101:9792–9796

    Article  CAS  Google Scholar 

  4. Hamzah F, Idris A, Shuan TK (2011) Preliminary study on enzymatic hydrolysis of treated oil palm (Elaeis) empty fruit bunches fibre by using combination of cellulose and β1-4 glucosidase. Biomass Bioenerg 35:1055–1059

    Article  CAS  Google Scholar 

  5. Piarpuzán D, Quintero JA, Cardona CA (2011) Empty fruit bunches from oil palm as a potential raw material for fuel ethanol production. Biomass Bioenerg 35:1130–1137

    Article  Google Scholar 

  6. Abdullah MA, Nazir MS, Wahjoedi BA (2011) Development of value-added biomaterials from oil palm agro-wastes. IPCBEE 7:32–35

    Google Scholar 

  7. Chandel AK, Singh OV (2011) Weedy lignocellulosic feedstock and microbial metabolic engineering: advancing the generation of ‘biofuel’. Appl Microbiol Biotechnol 89:1289–1303

    Article  CAS  Google Scholar 

  8. da Costa Sousa L, Chundawat SP, Balan V, Dale BE (2009) ‘Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies. Curr Opin Biotechnol 20:339–347

    Article  Google Scholar 

  9. FitzPatrick M, Champagne P, Cunningham MF, Whitney RA (2010) A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour Technol 101:8915–8922

    Article  CAS  Google Scholar 

  10. Geng AL, Xin FX, Ip JY (2012) Ethanol production from horticultural waste treated by a modified organosolv method. Bioresour Technol 104:715–721

    Article  CAS  Google Scholar 

  11. Singhania RR, Patel AK, Soccol CR, Pandey A (2009) Recent advances in solid state fermentation. Biochemical Eng J 44:13–18

    Article  CAS  Google Scholar 

  12. Kim J, Hosobuchi M, Kishimoto M, Seki T, Yoshida T, Taguchi H (1985) Cellulase production by a solid state culture system. Biotechnol Bioeng 27:1445–1450

    Article  CAS  Google Scholar 

  13. Shamala TR, Sreekantiah KR (1986) Production of cellulases and d-xylanase by some selected fungal isolates. Enzyme Microb Technol 8:178–182

    Article  CAS  Google Scholar 

  14. Considine PJ, O’Rorke A, Hackett TJ, Coughlan MP (1988) Hydrolysis of beet pulp polysaccharides by extracts if solid state cultures of Penicillium capsulatum. Biotechnol Bioeng 31:433–438

    Article  CAS  Google Scholar 

  15. Tuohy MG, Coughlan TL, Coughlan MP (1990) Solid state versus liquid cultivation of Talaromyces emersonii on straws and pulps: enzyme productivity. In: Coughlan M (ed), Advances in biological treatments of lignocellulosic materials. Elsevier Applied Science, pp 153–175

  16. Kalogeris E, Fountoukides G, Kekos D, Macris BJ (1999) Design of solid state bioreactor for thermophilic microorganisms. Bioresour Technol 67:313–315

    Article  CAS  Google Scholar 

  17. Kang SW, Park YS, Lee JS, Hong SI, Kim SW (2004) Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresour Technol 91:153–156

    Article  CAS  Google Scholar 

  18. Xin FX, Geng AL (2010) Horticultural waste as the substrate for cellulase and hemicellulase production by Trichoderma reesei under solid-state fermentation. Appl Biochem Biotechnol 162:295–306

    Article  CAS  Google Scholar 

  19. Ghose TK (1987) Measurement of cellulase activity. Pure Appl Chem 59:257–268

    CAS  Google Scholar 

  20. Ghose TK, Bisaria VS (1987) Measurement of hemicellulase activity. Pure Appl Chem 59:1739–1752

    CAS  Google Scholar 

  21. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  22. Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23:257–270

    Article  CAS  Google Scholar 

  23. Yang HP, Yan R, Chen HP, Zheng CG, Lee DH, Liang DT (2006) An in-depth investigation of biomass pyrolysis based on three major components: xylan, cellulose and lignin. Energy Fuels 20:388–393

    Article  CAS  Google Scholar 

  24. Gupta R, Sharma KK, Kuhad RC (2009) Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis-NCIM 3498. Bioresour Technol 100:1214–1220

    Article  CAS  Google Scholar 

  25. Mosier N, Wyman CE, Dale BE, Elander RT, Lee YY, Holtzapple M, Ladisch MR (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  CAS  Google Scholar 

  26. Araque E, Parra C, Freer J, Contreras D, Rodriguez J, Mendonca R, Baeza J (2008) Evaluation of organosolv pretreatment for the conversion of Pinus radiate D. Don to ethanol. Enzyme Microb Technol 3:214–219

    Article  Google Scholar 

  27. Cheung SW, Anderson BC (1997) Laboratory investigation of ethanol production from municipal primary wastewater solids. Bioresour Technol 59:81–96

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengxue Xin.

Additional information

Y. Zhu and F. Xin contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 309 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Xin, F., Zhao, Y. et al. An integrative process of bioconversion of oil palm empty fruit bunch fiber to ethanol with on-site cellulase production. Bioprocess Biosyst Eng 37, 2317–2324 (2014). https://doi.org/10.1007/s00449-014-1209-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1209-2

Keywords

Navigation