Skip to main content
Log in

Comparison of the hydrodynamics and mass transfer characteristics in internal-loop airlift bioreactors utilizing either a novel membrane-tube sparger or perforated plate sparger

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Two gas spargers, a novel membrane-tube sparger and a perforated plate sparger, were compared in terms of hydrodynamics and mass transfer (or oxygen transfer) performance in an internal-loop airlift bioreactor. The overall gas holdup ε T, downcomer liquid velocity V d, and volumetric mass transfer coefficient K L a were examined depending on superficial gas velocity U G increased in Newtonian and non-Newtonian fluids for the both spargers. Compared with the perforated plate sparger, the bioreactor with the membrane-tube sparger increased the values of ε T by 4.9–48.8 % in air–water system when the U G was from 0.004 to 0.04 m/s, and by 65.1–512.6 % in air–CMC solution system. The V d value for the membrane-tube sparger was improved by 40.0–86.3 %. The value of K L a was increased by 52.8–84.4 % in air–water system, and by 63.3–836.3 % in air–CMC solution system. Empirical correlations of ε T, V d, and K L a were proposed, and well corresponding with the experimental data with the deviation of 10 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

a :

Specific interfacial area (m−1)

A r :

Cross-sectional area in riser (m2)

A d :

Cross-sectional area in riser (m2)

K :

Consistency index, Pa sn

n :

Flow index

\(C_{\text{OL}}^{t}\) :

Instantaneous dissolved oxygen concentration (mg/L)

\(C_{\text{OL}}^{*}\) :

Saturation dissolved oxygen concentration (mg/L)

\(C_{OL}^{0}\) :

Initial dissolved oxygen concentration (mg/L)

CMC:

Carboxymethyl cellulose

C X :

Biomass concentration (kg/m3)

K L a :

Volumetric mass transfer coefficient (s−1)

Q :

Gas flow rate (m3/h)

U G :

Superficial gas velocity (m/s)

g :

Gravitational acceleration (m/s2)

ε i :

Gas holdup, i = r, d, T

τ :

Shear force, N/m2

γ :

Shear rate, s−1

γ av :

Average shear rate, s−1

ρ i :

Density of fluid (kg/m3), i = G, L

Δp :

Pressure difference between two measuring ports (Pa)

h :

Distance between two measuring points (m)

ν d :

Liquid velocity in downcomer (m/s)

H :

Distance between two conductivity probe’s location

Δt :

Time difference of two conductivity signal peak (s)

ν :

Bubble velocity (m/s)

μ ap :

Apparent viscosity (Pa s)

d B :

Bubble diameter (m)

α, α V, α K :

Exponent depends on the geometry of bioreactor for ε T, V d, and K L a correlation, respectively

β, β V, β K :

Exponent depends on U G for ε T, V d, and K L a correlation, respectively

γ, γ V, γ K :

Exponent depends on the apparent viscosity of liquid for ε T, V d, and K L a correlation, respectively

ap:

Apparent

r:

Riser

d:

Downcomer

T:

Total

G:

Gas phase

L:

Liquid phase

B:

Bubble

References

  1. Luo LJ, Liu FN, Xu YY, Yuan JQ (2011) Hydrodynamics and mass transfer characteristics in an internal loop airlift bioreactor with different spargers. Chem Eng J 175:494–504

    Article  CAS  Google Scholar 

  2. Lin TJ, Chen PCH (2005) Studies on hydrodynamics of an internal-loop airlift bioreactor in gas entrainment regime by particle image analyzer. Chem Eng J 108:69–79

    Article  CAS  Google Scholar 

  3. Krichnavaruk S, Pavasant P (2002) Analysis of gas-liquid mass transfer in an airlift contactor with perforated plates. Chem Eng J 89:203–211

    Article  CAS  Google Scholar 

  4. Gavrilescu M, Roman RV, Tudose RZ (1997) Hydrodynamics in external-loop airlift bioreactors with static mixers. Bioprocess Biosyst Eng 16:93–99

    Article  CAS  Google Scholar 

  5. Chisti Y, Kasper M, Moo-Young M (1990) Mass transfer in internal-loop airlift bioreactors by using static mixers. Can J Chem Eng 68:45–50

    Article  CAS  Google Scholar 

  6. Xu YY, Luo LJ, Yuan JQ (2011) CFD simulations to portray the bubble distribution and the hydrodynamics in an annulus sparged air-lift bioreactor. Can J Chem Eng 89:360–368

    Article  CAS  Google Scholar 

  7. Garcia-Ochoa F, Gomez E (2009) Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv 27:153–176

    Article  CAS  Google Scholar 

  8. Wang TF, Wang JF (2007) Numerical simulations of gas–liquid mass transfer in bubble columns with a CFD–PBM coupled model. Chem Eng Sci 62:7107–7118

    Article  CAS  Google Scholar 

  9. Šijački IM et al (2011) Sparger type influence on the hydrodynamics of the draft tube airlift bioreactor with diluted alcohol solutions. Ind Eng Chem Res 50:3580–3591

    Article  Google Scholar 

  10. Merchuk JC, Contreras A, Garcia F, Molina E (1998) Studies of mixing in a concentric tube airlift bioreactor with different spargers. Chem Eng Sci 53:709–719

    Article  CAS  Google Scholar 

  11. Fadavi A, Chisti Y (2007) Gas holdup and mixing characteristics of a novel forced circulation loop bioreactor. Chem Eng J 131:105–111

    Article  CAS  Google Scholar 

  12. Fadavi A, Chisti Y (2005) Gas–liquid mass transfer in a novel forced circulation loop bioreactor. Chem Eng J 112:73–80

    Article  CAS  Google Scholar 

  13. Chisti Y, Halard B, Moo-Young M (1988) Liquid circulation in airlift bioreactors. Chem Eng Sci 43:451–457

    Article  CAS  Google Scholar 

  14. Merchuk JC, Berzin I (1995) Distribution of energy dissipation in airlift bioreactors. Chem Eng Sci 50:2225–2233

    Article  CAS  Google Scholar 

  15. Garcia Calvo E (1989) A fluid dynamic model for airlift loop bioreactors. Chem Eng Sci 44:321–323

    Article  CAS  Google Scholar 

  16. Chisti MY, Moo-Young M (1987) Airlift bioreactors: characteristics, applications and design considerations. Chem Eng Commun 60:195–242

    Article  CAS  Google Scholar 

  17. Snape JB, Zahradnik J, Fialova M, Thomas NH (1995) Liquid-phase properties and sparger design effects in an external-loop airlift bioreactor. Chem Eng Sci 50:3175–3186

    Article  CAS  Google Scholar 

  18. Lin J, Han M, Wang T, Zhang T, Wang J, Jin Y (2004) Influence of the gas distributor on the local hydrodynamic behavior of an external loop airlift bioreactor. Chem Eng J 102:51–59

    Article  CAS  Google Scholar 

  19. Smith BC, Skidmore DR (1990) Mass transfer phenomena in an airlift bioreactor: effects of solids loading and temperature. Biotechnol Bioeng 35:483–491

    Article  CAS  Google Scholar 

  20. Mouza AA, Dalakoglou GK, Paras SV (2005) Effect of liquid properties on the performance of bubble column reactors with fine pore spargers. Chem Eng Sci 60:1465–1475

    Article  CAS  Google Scholar 

  21. Kazakis NA, Papadopoulos ID, Mouza AA (2007) Bubble columns with fine pore sparger operating in the pseudo-homogeneous regime: gas hold up prediction and a criterion for the transition to the heterogeneous regime. Chem Eng Sci 62:3092–3103

    Article  CAS  Google Scholar 

  22. Moraveji MK, Sajjadi B, Davarnejad R (2011) Gas-liquid hydrodynamics and mass transfer in aqueous alcohol solutions in a split-cylinder airlift bioreactor. Chem Eng Technol 34:465–474

    Article  CAS  Google Scholar 

  23. Kimono PM, Margaritis A, Bergougnou MA (2010) Hydrodynamic characteristics in an inverse internal-loop airlift-driven fibrous-bed bioreactor. Chem Eng Sci 65:692–707

    Article  Google Scholar 

  24. Lehrer LH (1968) Gas agitation of liquids. Ind Eng Chem Res 7:226–239

    Article  CAS  Google Scholar 

  25. Freitas C, Teixeira JA (2001) Oxygen mass transfer in a high solids loading three-phase internal-loop airlift bioreactor. Chem Eng J 84:57–61

    Article  CAS  Google Scholar 

  26. Bannari R, Bannari A, Selma B, Proulx P (2011) Mass transfer and shear in an airlift bioreactor: using a mathematical model to improve bioreactor design and performance. Chem Eng Sci 66:2057–2067

    Article  CAS  Google Scholar 

  27. Deng Z, Wang T, Zhang N, Wang Z (2010) Gas holdup, bubble behavior and mass transfer in a 5 m high internal-loop airlift bioreactor with non-Newtonian fluid. Chem Eng J 160:729–737

    Article  CAS  Google Scholar 

  28. Li GQ, Yang SZ, Cai ZL, Chen JY (1995) Mass transfer and gas-liquid circulation in an airlift bioreactor with viscous non-Newtonian fluids. Chem Eng J 56:B101–B107

    CAS  Google Scholar 

  29. Loimer T, Machu G, Schaflinger U (2004) Inviscid bubble formation on porous plates and sieve plates. Chem Eng Sci 59:809–818

    Article  CAS  Google Scholar 

  30. Contreras A, Garcia F, Molina E, Merchuk JC (1999) Influence of sparger on energy dissipation, shear rate, and mass transfer to sea water in a concentric-tube airlift bioreactor. Enzyme Microb Technol 25:820–830

    Article  CAS  Google Scholar 

  31. Anastasiou AD, Passos AD, Mouza AA (2013) Bubble columns with fine pore sparger and non-Newtonian liquid phase: prediction of gas holdup. Chem Eng Sci 98:331–338

    Article  CAS  Google Scholar 

  32. Vitankar VS, Dhotre MT, Joshi JB (2002) A low Reynolds number kε model for the prediction of flow pattern and pressure drop in bubble column reactors. Chem Eng Sci 57:3235–3250

    Article  CAS  Google Scholar 

  33. Bouaifi M, Hebrard G, Bastoul D, Roustan M (2001) A comparative study of gas hold-up, bubble size, interfacial area and mass transfer coefficients in stirred gas–liquid reactors and bubble columns. Chem Eng Proc 40:97–111

    Article  CAS  Google Scholar 

  34. Gavrilescu M, Tudose RZ (1995) Study of the liquid circulation velocity in external-loop airlift bioreactors. Bioprocess Biosyst Eng 14:33–39

    Article  CAS  Google Scholar 

  35. Zahradnik J, Fialova M, Ruzicka M, Drahos J, Kastanek F, Thomas NH (1997) Duality of the gas–liquid flow regimes in bubble column bioreactors. Chem Eng Sci 52:3811–3826

    Article  CAS  Google Scholar 

  36. Cerri MO, Futiwaki L, Jesus CDF, Cruz AJG, Badino AC (2008) Average shear rate for non-Newtonian fluids in a concentric-tube airlift bioreactor. Biochem Eng J 39(1):51–57

    Article  CAS  Google Scholar 

  37. Shi LK, Riba JP, Angelino H (1990) Estimation of effective shear rate for aerated non-Newtonian liquids in airlift bioreactor. Chem Eng Commun 89:25–35

    Article  CAS  Google Scholar 

  38. Kawase Y, Kumagai T (1991) Apparent viscosity for non-Newtonian fermentation media in bioreactors. Bioprocess Eng 7:25–28

    CAS  Google Scholar 

  39. Al-Masry WA (1999) Effect of scale-up on average shear rates for aerated non-Newtonian liquids in external loop airlift reactors. Biotechnol Bioeng 62(4):494–498

    Article  CAS  Google Scholar 

  40. Gavrilescu M, Tudose RZ (1997) Hydrodynamics of non-Newtonian liquids in external-loop airlift bioreactors. Bioprocess Eng 18:17–26

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by The National Key Technology R&D Program (No. 2012BAI44G00) and The National High-Tech R&D Program (No. 2014AA021703).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ce Wei or Ganlu Li.

Additional information

C. Wei and B. Wu had contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, C., Wu, B., Li, G. et al. Comparison of the hydrodynamics and mass transfer characteristics in internal-loop airlift bioreactors utilizing either a novel membrane-tube sparger or perforated plate sparger. Bioprocess Biosyst Eng 37, 2289–2304 (2014). https://doi.org/10.1007/s00449-014-1207-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1207-4

Keywords

Navigation