Skip to main content
Log in

Mixotrophic cultivation of oleaginous Chlorella sp. KR-1 mediated by actual coal-fired flue gas for biodiesel production

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Flue gases mainly consist of CO2 that can be utilized to facilitate microalgal culture for bioenergy production. In the present study, to evaluate the feasibility of the utilization of flue gas from a coal-burning power plant, an indigenous and high-CO2-tolerant oleaginous microalga, Chlorella sp. KR-1, was cultivated under mixotrophic conditions, and the results were evaluated. When the culture was mediated by flue gas, highest biomass (0.8 g cells/L·d) and FAME (fatty acid methyl esters) productivity (121 mg/L·d) were achieved in the mixotrophic mode with 5 g/L glucose, 5 mM nitrate, and a flow rate of 0.2 vvm. By contrast, the photoautotrophic cultivation resulted in a lower biomass (0.45 g cells/L·d) and a lower FAME productivity (60.2 mg/L·d). In general, the fatty acid profiles of Chlorella sp. KR-1 revealed meaningful contents (>40 % of saturated and mono-unsaturated fatty acids) under the mixotrophic condition, which enables the obtainment of a better quality of biodiesel than is possible under the autotrophic condition. Conclusively then, it was established that a microalgal culture mediated by flue gas can be improved by adoption of mixotrophic cultivation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ramanathan V, Feng Y (2009) Air pollution, greenhouse gases and climate change: global and regional perspectives. Atmos Environ 43:37–50

    Article  CAS  Google Scholar 

  2. Shafiee S, Topal E (2009) When will fossil fuel reserves be diminished? Energy Policy 37:181–189

    Article  Google Scholar 

  3. Xiao M, Shin HJ, Dong Q (2013) Advances in cultivation and processing techniques for microalgal biodiesel: a review. Korean J Chem Eng 30:2119–2126

    Article  CAS  Google Scholar 

  4. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232

    Article  CAS  Google Scholar 

  5. Na JG, Han JK, Oh YK, Park JH, Jung TS, Han SS, Yoon HC, Chung SH, Kim JN, Ko CH (2012) Decarboxylation of microalgal oil without hydrogen into hydrocarbon for the production of transportation fuel. Catal Today 185:313–317

    Article  CAS  Google Scholar 

  6. Abou-Shanab RA, Matter IA, Kim SN, Oh YK, Choi J, Jeon BH (2011) Characterization and identification of lipid producing microalgae species isolated from a freshwater lake. Biomass Bioenergy 35:3079–3085

    Article  CAS  Google Scholar 

  7. Lee Y-C, Kim B, Farooq W, Chung J, Han J-I, Shin H-J, Jeong SH, Park J-Y, Lee J-S, Oh Y-K (2013) Harvesting of oleaginous Chlorella sp. by organoclays. Bioresour Technol 132:440–445

    Article  CAS  Google Scholar 

  8. Lee Y-C, Kim B, Huh YS, Farooq W, Chung J, Han J-I, Shin H-J, Jeong SH, Lee J-S, Oh Y-K, Park J-Y (2013) Lipid extractions from docosahexaenoic acid (DHA)-rich and oleaginous Chlorella sp. biomasses by organic-nanoclays. Bioresour Technol 137:74–81

    Article  CAS  Google Scholar 

  9. Lee Y-C, Oh SY, Lee HU, Kim B, Lee SY, Choi MH, Lee G-W, Park JY, Oh Y-K, Ryu T, Han Y-K, Chung K-S, Huh YS (2014) Aminoclay-induced humic acid flocculation for efficient harvesting of oleaginous Chlorella sp. Bioresour Technol 153:365–369

    Article  CAS  Google Scholar 

  10. Farooq W, Lee Y-C, Han J-I, Darpito CH, Choi M, Yang J-W (2013) Efficient microalgae harvesting by organo-building blocks of nanoclays. Green Chem 15:749–755

    Article  CAS  Google Scholar 

  11. Praveenkumar R, Shameera K, Mahalakshmi G, Akbarsha MA, Thajuddin N (2012) Influence of nutrient deprivations on lipid accumulation in a dominant indigenous microalga Chlorella sp., BUM11008: evaluation for biodiesel production. Biomass Bioenergy 37:60–66

    Article  CAS  Google Scholar 

  12. Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043–1049

    Article  CAS  Google Scholar 

  13. Oh Y-K, Raj SM, Jung GY, Park S (2011) Current status of the metabolic engineering of microorganisms for biohydrogen production. Bioresour Technol 102:8357–8367

    Article  CAS  Google Scholar 

  14. Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102:71–81

    Article  CAS  Google Scholar 

  15. Miao X, Wu Q (2004) High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J Biotechnol 110:85–93

    Article  CAS  Google Scholar 

  16. Ogbonna JC, Ichige E, Tanaka H (2002) Interactions between photoautotrophic and heterotrophic metabolism in photoheterotrophic cultures of Euglena gracilis. Appl Microbiol Biotechnol 58:532–538

    Article  CAS  Google Scholar 

  17. Ceron-Garcia MC, Garcia-Camacho F, Sanchez-Miron A, Fernandez-Sevilla JM, Chisti Y, Molina-Grima E (2006) Mixotrophic production of marine microalga Phaeodactylum tricornutum on various carbon sources. J Microbiol Biotechnol 16:689–694

    CAS  Google Scholar 

  18. Wan M, Liu P, Xia J, Rosenberg JN, Oyler GA, Betenbaugh MJ, Nie Z, Qiu G (2011) The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana. Appl Microbiol Biotechnol 91:831–844

    Google Scholar 

  19. Hende SVD, Vervaeren H, Boon N (2012) Flue gas compounds and microalgae: (Bio-)chemical interactions leading to biotechnological opportunities. Biotechnol Adv 30:1405–1424

    Article  Google Scholar 

  20. Lee JS, Kim DK, Lee JP, Park SC, Koh JH, Cho HS, Kim SW (2002) Effects of SO2 and NO on growth of Chlorella sp. KR-1. Bioresour Technol 82:1–4

    Article  CAS  Google Scholar 

  21. Negoro M, Shioji N, Miyamoto K, Miura Y (1991) Growth of Microalgae in High CO2 Gas and Effects of SOx and NOx. Appl Biochem Biotechnol 28(29):877–886

    Article  Google Scholar 

  22. Maeda K, Owadai M, Kimura N, Omata K, Karube I (1995) CO2 fixation from the flue gas on coal-fired thermal power plant by microalgae. Energy Convers Manag 36:717–720

    Article  CAS  Google Scholar 

  23. Douskova I, Doucha J, Livansky K, Machat J, Novak P, Umysova D, Zachleder V, Vitova M (2009) Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs. Appl Microbiol Biotechnol 82:179–185

    Article  CAS  Google Scholar 

  24. Chiu SY, Kao CY, Chen CH, Kuan TC, Ong SC, Lin CS (2008) Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresour Technol 99:3389–3396

    Article  CAS  Google Scholar 

  25. Chiu SY, Kao CY, Tsai MT, Ong SC, Chen CH, Lin CS (2009) Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol 100:833–838

    Article  CAS  Google Scholar 

  26. Jiang Y, Zhang W, Wang J, Chen Y, Shen S, Liu T (2013) Utilization of simulated flue gas for cultivation of Scenedesmus dimorphus. Bioresour Technol 128:359–364

    Article  CAS  Google Scholar 

  27. Negoro M, Hamasaki A, Ikuta Y, Makita T, Hirayama K, Suzuki S (1993) Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler. Appl Biochem Biotechnol 39(40):643–653

    Article  Google Scholar 

  28. Doucha J, Straka F, Livansky K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412

    Article  Google Scholar 

  29. Chiu S-Y, Kao C-Y, Huang T-T, Lin C-J, Ong S-C, Chen C-D, Chang J-S, Lin C-S (2011) Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures. Bioresour Technol 102:9135–9142

    Article  CAS  Google Scholar 

  30. Park YC, Jo SH, Ryu CK, Yi CK (2009) Long-term operation of carbon dioxide capture system from a real coal-fired flue gas using dry regenerable potassium-based sorbents. Energy Procedia 1:1235–1239

    Article  CAS  Google Scholar 

  31. Sung KD, Lee JS, Shin CS, Park SC, Choi MJ (1999) CO2 fixation by Chlorella sp. KR-1 and its cultural characteristics. Bioresour Technol 68:269–273

    Article  CAS  Google Scholar 

  32. Han K-H, Park J, Ryu J-I, Jin G-T (1999) Coal combustion characteristics in a pressurized fluidized bed. Korean J Chem Eng 16:804–809

    Article  CAS  Google Scholar 

  33. Cho S, Lee D, Luong TT, Park S, Oh YK, Lee T (2011) Effects of carbon and nitrogen sources on fatty acid contents and composition in the green microalga, Chlorella sp. 227. J Microbiol Biotechnol 21:1073–1080

    Article  CAS  Google Scholar 

  34. Na JG, Lee HS, Oh YK, Park JY, Ko CH, Lee SH, Yi KB, Chung SH, Jeon SG (2011) Rapid estimation of triacylglycerol content of Chlorella sp. by thermogravimetric analysis. Biotechnol Lett 33:957–960

    Article  CAS  Google Scholar 

  35. Heredia-Arroyoa T, Weib W, Ruanc R, Hu B (2011) Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar material. Biomass Bioenergy 35:2245–2253

    Article  Google Scholar 

  36. Farooq W, Lee Y-C, Ryu B-G, Kim B-H, Kim H-S, Choi Y-E, Yang J-W (2013) Two-stage cultivation of two Chlorella sp. strains by simultaneous treatment of brewery wastewater and maximizing lipid productivity. Bioresour Technol 132:230–238

    Article  CAS  Google Scholar 

  37. Cheirsilp B, Torpee S (2012) Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour Technol 110:510–516

    Article  CAS  Google Scholar 

  38. Flynn KJ, Butler I (1986) Nitrogen sources for the growth of marine microalgae: role of dissolved free amino acids. Mar Ecol Prog Ser 34:281–304

    Article  CAS  Google Scholar 

  39. Jeanfils J, Canisius M-F, Burlion N (1993) Effect of high nitrate concentration on growth and nitrate uptake by free-living and immobilized Chlorella vulgaris cells. J Appl Phycol 5:369–374

    Article  CAS  Google Scholar 

  40. Arbiba Z, Ruiza J, Alvarez-Díaza P, Garrido-Pereza C, Barragana J, Perales JA (2013) Effect of pH control by means of flue gas addition on three different photo-bioreactors treating urban wastewater in long-term operation. Ecol Eng 57:226–235

    Article  Google Scholar 

  41. Hadj-Romdhane F, Zheng X, Jaouen P, Pruvost J, Grizeau D, Croué JP, Bourseau P (2013) The culture of Chlorella vulgaris in a recycled supernatant: effects on biomass production and medium quality. Bioresour Technol 132:285–292

    Article  CAS  Google Scholar 

  42. Thornton DCO (2014) Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean. Eur J Phycol 49(1):20–46

    Article  CAS  Google Scholar 

  43. Oh Y-K, Seol E-H, Kim J-R, Park S (2003) Fermentative biohydrogen production by a new chemoheterotrophic bacterium Citrobacter sp. Y19. Int J Hydrog Energy 28:1353–1359

    Article  CAS  Google Scholar 

  44. Li F–F, Yang Z-H, Zeng R, Yang Z, Chang X, Yan J-B, Hou Y-L (2011) Microalgae capture of CO2 from actual flue gas discharged from a combustion chamber. Ind Eng Chem Res 50:6496–6502

    Article  CAS  Google Scholar 

  45. King GM (2001) Aspects of carbon monoxide production and oxidation by marine macroalgae. Mar Ecol Prog Ser 224:69–75

    Article  CAS  Google Scholar 

  46. European Standard EN14214 (E) (2008) Automotive fuels—fatty acid methyl esters (FAME) for diesel engines—requirements and test methods. European Committee for Standardization, Brussels. http://www.cenorm.be/

  47. Francisco EC, Neves DB, Jacob-Lopes E, Franco TT (2010) Microalgae as feedstock for biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality. J Chem Technol Biotechnol 85:395–403

    Article  CAS  Google Scholar 

  48. Praveenkumar R, Johncy K, Mubarakali D, Vijayan D, Thajuddin N, Gunasekaran M (2012) Demonstration of increased lipid accumulation potential of Stigeoclonium sp., Kutz. BUM11007 under nitrogen starved regime: a new source of lipids for biodiesel production. J Biobased Mat Bioenergy 6:209–213

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was conducted under the framework of the Research and Development Program of the Korea Institute of Energy Research (KIER) (B4-2434-01). Further support was received from the Advanced Biomass R&D Center (ABC) of the Global Frontier Project funded by the Ministry of Science, ICT and Future Planning (ABC-2012M3A6A205388), and by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and Ministry of Knowledge Economy (MKE) of Korea as a part of the Project of “Process demonstration for bioconversion of CO2 to high-valued biomaterials using microalgae”(2012-T-100201516) in “Energy Efficiency and Resources R&D project”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-Kwan Oh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 50 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Praveenkumar, R., Kim, B., Choi, E. et al. Mixotrophic cultivation of oleaginous Chlorella sp. KR-1 mediated by actual coal-fired flue gas for biodiesel production. Bioprocess Biosyst Eng 37, 2083–2094 (2014). https://doi.org/10.1007/s00449-014-1186-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1186-5

Keywords

Navigation