Skip to main content
Log in

Chemical modification with functionalized ionic liquids: a novel method to improve the enzymatic properties of Candida rugosa lipase

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Chemical modification of lysine residues in Candida rugosa lipase (CRL) was carried out using five different functional ionic liquids, and about 15.4–25.0 % of the primary amino groups of lysine were modified. Enzymatic properties of the native and modified CRLs were investigated in olive oil hydrolysis reaction. Improved thermal stability, catalytic activity in organic solvents, and adaptability to temperature and pH changes were achieved compared with the native enzyme. CRL modified by [choline][H2PO4] showed the best results, bearing a maximum improvement of 16.7 % in terms of relative activity, 5.2-fold increase in thermostability (after incubation at 45 °C for 5 h), and 2.3-fold increase in activity in strong polar organic solvent (80 % dimethyl sulfoxide) compared with the native enzyme. The results of ultraviolet, circular dichroism and fluorescence spectroscopy suggested that the change of the secondary and tertiary structures of CRL caused by the chemical modification resulted in the enhancement of enzymatic performance. The modification of CRL with functional ionic liquids was proved to be a novel and efficient method for improving the enzymatic properties of CRL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Seelig B, Szostak JW (2007) Selection and evolution of enzymes from a partially randomized non-catalytic scaffold. Nature 448:828–831

    Article  CAS  Google Scholar 

  2. Zheng GW, Xu JH (2011) New opportunities for biocatalysis: driving the synthesis of chiral chemicals. Curr Opin Biotechnol 22:784–792

    Article  CAS  Google Scholar 

  3. Goswami D, Basu JK, De S (2013) Lipase applications in oil hydrolysis with a case study on castor oil: a review. Crit Rev Biotechnol 33:1–16

    Article  Google Scholar 

  4. Ding Y, Huang H, Hu Y (2013) New progress on lipases catalyzed C–C bond formation reactions. Chin J Org Chem 33:905–914

    Article  CAS  Google Scholar 

  5. Deive FJ, Álvarez MS, Sanromán MA, Longo MA (2013) North Western Spain hot springs are a source of lipolytic enzyme-producing thermophilic microorganisms. Bioprocess Biosyst Eng 36:239–250

    Article  CAS  Google Scholar 

  6. Hult K, Maurer S, Hamberg A (2012) Rational engineering of Candida antarctica lipase B for selective monoacylation of diols. Chem Commun 48:10013–10015

    Article  Google Scholar 

  7. Durand E, Lecomte J, Barea B, Piombo G, Dubreucq E, Villeneuve P (2012) Evaluation of deep eutectic solvents as new media for Candida antarctica B catalyzed reactions. Process Biochem 47:2081–2089

    Article  CAS  Google Scholar 

  8. Forsyth C, Patwardhan SV (2013) Controlling performance of lipase immobilised on bioinspired silica. J Mater Chem 1:1164–1174

    Article  CAS  Google Scholar 

  9. Díaz-Rodríguez A, Davis BG (2011) Chemical modification in the creation of novel biocatalysts. Curr Opin Chem Biol 15:211–219

    Article  Google Scholar 

  10. Cowan DA, Fernandez-Lafuente R (2011) Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization. Enzyme Microb Technol 49:326–346

    Article  CAS  Google Scholar 

  11. Chalker JM, Bernardes GJ, Lin YA, Davis BG (2009) Chemical modification of proteins at cysteine: opportunities in chemistry and biology. Chem Asian J 4:630–640

    Article  CAS  Google Scholar 

  12. Han D, Tang B, Lee YR, Row KH (2012) Application of ionic liquid in liquid phase microextraction technology. J Sep Sci 35:2949–2961

    Article  CAS  Google Scholar 

  13. Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150

    Article  CAS  Google Scholar 

  14. Zou B, Hu Y, Yu DH, Jiang L, Liu WM, Song P (2011) Functionalized ionic liquid modified mesoporous silica SBA-15: a novel, designable and efficient carrier for porcine pancreas lipase. Colloids Surf B 88:93–99

    Article  CAS  Google Scholar 

  15. Zou B, Hu Y, Yu DH, Xia JJ, Tang SS, Liu WM, Huang H (2010) Immobilization of porcine pancreatic lipase onto ionic liquid modified mesoporous silica SBA-15. Biochem Eng J 53:150–153

    Article  CAS  Google Scholar 

  16. Hu Y, Tang SS, Jiang L, Zou B, Yang J, Huang H (2012) Immobilization of Burkholderia cepacia lipase on functionalized ionic liquids modified mesoporous silica SBA-15. Process Biochem 47:2291–2299

    Article  CAS  Google Scholar 

  17. Yang J, Hu Y, Jiang L, Zou B, Jia R, Huang H (2013) Enhancing the catalytic properties of porcine pancreatic lipase by immobilization on SBA-15 modified by functionalized ionic liquid. Biochem Eng J 70:46–54

    Article  CAS  Google Scholar 

  18. Jia R, Hu Y, Liu L, Jiang L, Zou B, Huang H (2013) Enhancing catalytic performance of porcine pancreatic lipase by covalent modification using functional ionic liquids. ACS Catal 3:1976–1983

    Article  CAS  Google Scholar 

  19. Smith PK, Frohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  CAS  Google Scholar 

  20. Habeeb AF (1966) Determination of free amino groups in proteins by trinitrobenzenesulfonic acid. Anal Biochem 14:328–336

    Article  CAS  Google Scholar 

  21. Monier M, Wei Y, Sarhan A (2010) Evaluation of the potential of polymeric carriers based on photo-crosslinkable chitosan in the formulation of lipase from Candida rugosa immobilization. J Mol Catal B Enzym 63:93–101

    Article  CAS  Google Scholar 

  22. Zhao H (2006) Are ionic liquids kosmotropic or chaotropic? An evaluation of available thermodynamic parameters for quantifying the ion kosmotropicity of ionic liquids. J Chem Technol Biotechnol 81:877–891

    Article  CAS  Google Scholar 

  23. Zhao H, Olubajo O, Song Z, Sims AL, Person TE, Lawal RA, Holley LA (2006) Effect of kosmotropicity of ionic liquids on the enzyme stability in aqueous solutions. Bioorg Chem 34:15–25

    Article  CAS  Google Scholar 

  24. Yang Z (2009) Hofmeister effects: an explanation for the impact of ionic liquids on biocatalysis. J Biotechnol 144:12–22

    Article  CAS  Google Scholar 

  25. Zhao H (2010) Methods for stabilizing and activating enzymes in ionic liquids—a review. J Chem Technol Biotechnol 85:891–907

    Article  CAS  Google Scholar 

  26. Hernáiz MJ, Sánchez-Montero JM, Sinisterra JV (1999) Modification of purified lipases from Candida rugosa with polyethylene glycol: a systematic study. Enzyme Microb Technol 24:181–190

    Article  Google Scholar 

  27. de la Casa RM, Guisán JM, Sánchez-Montero JM, Sinisterra JV (2002) Modification of the activities of two different lipases from Candida rugosa with dextrans. Enzyme Microb Technol 30:30–40

    Article  Google Scholar 

  28. Park K, Kim H, Maken S, Kim Y, Min B, Park J (2005) Characteristics of the lipase from Candida rugosa modified with copolymers of polyoxyethylene derivative and maleic acid anhydride. Korean J Chem Eng 22:412–417

    Article  CAS  Google Scholar 

  29. Bian W, Lou LL, Yan B, Zhang C, Wu S, Liu S (2011) Immobilization of papain by carboxyl-modified SBA-15: rechecking the carboxyl after excluding the contribution of H2SO4 treatment. Micropor Mesopor Mater 143:341–347

    Article  CAS  Google Scholar 

  30. Liu JZ, Wang TL, Huang MT, Song HY, Weng LP, Ji LN (2006) Increased thermal and organic solvent tolerance of modified horseradish peroxidase. Protein Eng Des Sel 19:169–173

    Article  CAS  Google Scholar 

  31. Szabó A, Kotormán M, Laczkó I, Simon LM (2009) Improved stability and catalytic activity of chemically modified papain in aqueous organic solvents. Process Biochem 44:199–204

    Article  Google Scholar 

  32. Xiong Y, Gao J, Zheng J, Deng N (2011) Effects of succinic anhydride modification on laccase stability and phenolics removal efficiency. Chin J Catal 32:1584–1591

    Article  CAS  Google Scholar 

  33. Freitas DD, Abrahão-Neto J (2010) Biochemical and biophysical characterization of lysozyme modified by PEGylation. Int J Pharm 392:111–117

    Article  CAS  Google Scholar 

  34. Liu JZ, Wang M (2007) Improvement of activity and stability of chloroperoxidase by chemical modification. BMC Biotechnol 7:23–30

    Article  CAS  Google Scholar 

  35. Nordwald EM, Kaar JL (2013) Stabilization of enzymes in ionic liquids via modification of enzyme charge. Biotechnol Bioeng 110:2352–2360

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science Foundation for Distinguished Young Scholars of China (No. 21225626), the National Natural Science Foundation of China for Young Scholars (Grant No. 20906049), the National Basic Research Program of China (Grant No. 2011CB710800), the Hi-Tech Research and Development Program of China (863 Program, 2011AA02A209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Y., Yang, J., Jia, R. et al. Chemical modification with functionalized ionic liquids: a novel method to improve the enzymatic properties of Candida rugosa lipase. Bioprocess Biosyst Eng 37, 1617–1626 (2014). https://doi.org/10.1007/s00449-014-1134-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1134-4

Keywords

Navigation