Skip to main content
Log in

In vitro biocompatibility of chitosan/hyaluronic acid-containing calcium phosphate bone cements

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The need for bone repair has increased as the population ages. In this research, calcium phosphate cements, with and without chitosan (CS) and hyaluronic acid (HA), were synthesized. The composition and morphological properties of cements were evaluated by X-ray diffraction and scanning electron microscopy. The acellular in vitro bioactivity revealed that different apatite morphologies were formed on the surfaces of cements after soaking in simulated body fluid. The in vitro osteoblastic cell biocompatibility of in situ forming cements was evaluated and compared with those of conventional calcium phosphate cements (CPCs). The viability and growth rate of the cells were similar for all CPCs, but better alkaline phosphatase activity was observed for CPC with CS and HA. Calcium phosphate cements supported attachment of osteoblastic cells on their surfaces. Spindle-shaped osteoblasts with developed cytoplasmic membrane were found on the surfaces of cement samples after 7 days of culture. These results reveal the potential of the CPC–CS/HA composites to be used in bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Navarro M, Michiardi A, Castano O, Planell JA, Soc JR (2008) Biomaterials in orthopaedics. Interface 5:1137–1158

    CAS  Google Scholar 

  2. Bohner M (2010) Resorbable biomaterials as bone graft substitutes. Mater Today 13:24–30

    Article  CAS  Google Scholar 

  3. Heinemann S, Gelinsky M, Worch H, Hanke T (2011) Resorbable bone substitution materials: an overview of commercially available materials and new approaches in the field of composites. Orthopade 40:761–773

    Article  CAS  Google Scholar 

  4. Wu F, Wei L, Guo H, Liu CS (2008) Self-setting bioactive calcium–magnesium phosphate cement with high strength and degradability for bone regeneration. Acta Biomater 4:1873–1884

    Article  CAS  Google Scholar 

  5. Pilliar RM, Filiaggi MJ, Wells JD, Grynpas MD, Kandel RA (2001) Porous calcium polyphosphate scaffolds for bone substitute applications: in vitro characterization. Biomaterials 22:963–972

    Article  CAS  Google Scholar 

  6. Reilly GC, Radin S, Chen AT, Ducheyne P (2007) Differential alkaline phosphatase responses of rat and human bone marrow derived mesenchymal stem cells to 45S5 bioactive glass. Biomaterials 28:4091–4097

    Article  CAS  Google Scholar 

  7. Deville S, Saiz E, Nalla RK, Tomsia AP (2006) Freezing as a path to build complex composites. Science 311:515–518

    Article  CAS  Google Scholar 

  8. Link DP, van den Dolder J, van den Beucken JJ, Wolke JG, Mikos AG et al (2008) Bone response and mechanical strength of rabbit femoral defects filled with injectable CaP cements containing TGF-b1 loaded gelatin microspheres. Biomaterials 29:675–682

    Article  CAS  Google Scholar 

  9. Kretlow JD, Young S, Klouda L, Wong M, Mikos AG (2009) Injectable biomaterials for regenerating complex craniofacial tissues. Adv Mater 21:3368–3393

    Article  CAS  Google Scholar 

  10. Brown WE, Chow LC (1986) A new calcium phosphate water setting cement. In: Brown PW (ed) Cements research progress. American Ceramic Society, Westerville, pp 352–379

    Google Scholar 

  11. Julien M, Khairoun I, LeGeros RZ, Delplace S, Pilet P et al (2007) Physicochemical–mechanical and in vitro biological properties of calcium phosphate cements with doped amorphous calcium phosphates. Biomaterials 28:956–965

    Article  CAS  Google Scholar 

  12. Moreau JL, Xu HHK (2009) Mesenchymal stem cell proliferation and differentiation on an injectable calcium phosphate–chitosan composite scaffold. Biomaterials 30:2675–2682

    Article  CAS  Google Scholar 

  13. Xu HHK, Zhao L, Detamore MS, Takagi S, Chow LC (2010) Umbilical cord stem cell seeding on fast-resorbable calcium phosphate bone cement. Tissue Eng A 16:2743–2753

    Article  CAS  Google Scholar 

  14. Ahmadzadeh-Asl S, Hesaraki S, Zamanian A (2011) Preparation and characterisation of calcium phosphate–hyaluronic acid nanocomposite bone cement. Adv Appl Ceram 110:340–345

    Article  CAS  Google Scholar 

  15. Yokoyama A, Yamanoto S, Kawasaki T, Kohgo T, Nakasu M (2002) Development of calcium phosphate cement using chitosan and citric acid for bone substitute materials. Biomaterials 23:1091–1101

    Article  CAS  Google Scholar 

  16. Bodde E, Boerman O, Russel F, Mikos A, Spauwen P et al (2008) The kinetic and biological activity of different loaded rhBMP-2 calcium phosphate cement implants in rats. J Biomed Mater Res A 87A:780–791

    Article  CAS  Google Scholar 

  17. Wang X, Ma J, Wang Y, He B (2001) Structural characterization of phosphorylated chitosan and their applications as effective additives of calcium phosphate cements. Biomaterials 22:2247–2255

    Article  CAS  Google Scholar 

  18. Almond A, Deangelis PL, Blundell CD (2006) Hyaluronan: the local solution conformation determined by NMR and computer modeling is close to a contracted left-handed 4-fold helix. J Mol Biol 358:1256–1269

    Article  CAS  Google Scholar 

  19. Shin DY, Hwang E, ChoI H, Moon MH (2007) Molecular weight and structure characterization of sodium hyaluronate and its gamma radiation degradation products by flow field-flow fractionation and on-line multiangle light scattering. J Chromatogr A 1160:270–275

    Article  CAS  Google Scholar 

  20. Toole BP (2000) Hyaluronan is not just a goo. J Clin Invest 106:335–336

    Article  CAS  Google Scholar 

  21. Sasaki T, Watanabe C (1995) Stimulation of osteoinduction in bone wound healing by high-molecular hyaluronic acid. Bone 16:9–15

    Article  CAS  Google Scholar 

  22. Huang L, Cheng YY, Koo PL, Lee KM, Qin L, Cheng JC, Kumta SM (2003) The effect of hyaluronan on osteoblast proliferation and differentiation in rat calvarial-derived cell cultures. J Biomed Mater Res A 66A:880–884

    Article  CAS  Google Scholar 

  23. Lisignoli G, Zini N, Remiddi G, Piacentini A, Puggioli A, Trimarchi C, Fini M, Maraldi NM, Facchini A (2001) Basic fibroblast growth factor enhances in vitro mineralization of rat bone marrow stromal cells grown on non-woven hyaluronic acid based polymer scaffold. Biomaterials 22:2095–2105

    Article  CAS  Google Scholar 

  24. Di Martino A, Sittinger M, Risbud MV (2005) Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 26:5983–5990

    Article  Google Scholar 

  25. Alkhraisat MH, Rueda C, Marino FT, Torres J, Jerez LB, Gbureck U, Cabarcos EL (2009) The effect of hyaluronic acid on brushite cement cohesion. Acta Biomater 5:3150–3156

    Article  CAS  Google Scholar 

  26. Cherng B, Takagi S, Chow LC (1997) Effects of hydroxypropyl methyl cellulose and other gelling agents on the handling properties of calcium phosphate cement. J Biomed Mater Res 35:273–277

    Article  CAS  Google Scholar 

  27. Wu T, Hua X, He Z, Wang X, Yu X, Ren W (2012) The bactericidal and biocompatible characteristics o f reinforced calcium phosphate cements. Biomed Mater 7:045003–045013

    Article  Google Scholar 

  28. Xu HH, Quinn JB, Takagi S (2002) Processing and properties of strong and non-rigid calcium phosphate cement. J Dent Res 81(3):219–224

    Article  CAS  Google Scholar 

  29. Kai D, Li D, Zhu X, Zhang L, Fan H, Zhang X (2009) Addition of sodium hyaluronate and the effect on performance of the injectable calcium phosphate cement. J Mater Sci Mater Med 20:1595–1602

    Google Scholar 

  30. Hesaraki S, Zamanian A, Nazarian H (2009) Physical and physicochemical evaluation of calcium phosphate cement made using human derived blood plasma. Adv Appl Ceram 108:253–260

    Article  CAS  Google Scholar 

  31. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J Biomed Mater Res 24:721–734

    Article  CAS  Google Scholar 

  32. Oyane A, Kim HM, Furuya T, Kokubo T, Miyazaki T, Nakamura T (2003) Preparation and assessment of revised simulated body fluids. J Biomed Mater Res Part A 65:188–195

    Article  Google Scholar 

  33. Washburn NR, Weir M, Anderson P, Potter K (2004) Bone formation in polymeric scaffolds evaluated by proton magnetic resonance microscopy and X-ray microtomography. J Biomed Mater Res 69A:738–747

    Article  CAS  Google Scholar 

  34. Mössner E, Boll M, Pfleiderer G (1980) Purification of human and bovine alkaline phosphatases by affinity chromatography. Hoppe Seylers Z Physiol Chem 361(4):543–549

    Article  Google Scholar 

  35. van Meerloo J, Kaspers GJL, Cloos J (2011) Cell sensitivity assays: the MTT assay. Methods Mol Biol 731:237–245

    Article  Google Scholar 

  36. Hench LL, Wilson J (1995) An introduction to bioceramics. World Scientific, Singapore

    Google Scholar 

  37. Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74:1487–1510

    Article  CAS  Google Scholar 

  38. ReD Rawlings (1993) Bioactive glasses and glass–ceramics. Clin Mater 14:155–179

    Article  Google Scholar 

  39. Tadashi K, Hyun-Min K, Masakazu K (2003) Novel bioactive materials with different mechanical properties. Biomaterials 24:2161–2175

    Article  Google Scholar 

  40. Xu HHK, Simon CG (2005) Fast setting calcium phosphate–chitosan scaffold: mechanical properties and biocompatibility. Biomaterials 26:1337–1348

    Article  Google Scholar 

  41. Zhang Y, Zhang M (2002) Calcium phosphate/chitosan composite scaffolds for controlled in vitro antibiotic drug release. J Biomed Mater Res A 62:378–386

    Article  CAS  Google Scholar 

  42. Wang J, van Apeldoorn A, de Groot K (2006) Electrolytic deposition of calcium phosphate/chitosan coating on titanium alloy: growth kinetics and influence of current density, acetic acid, and chitosan. J Biomed Mater Res A 76:503–511

    Article  Google Scholar 

  43. Sainz M, Pena P, Serena S, Caballero A (2010) Influence of design on bioactivity of novel CaSiO3–CaMg(SiO3)2 bioceramics: in vitro simulated body fluid test and thermodynamic simulation. Acta Biomater 6:2797–2807

    Article  CAS  Google Scholar 

  44. Rhee SH (2003) Effect of calcium salt content in the poly(epsilon-caprolactone)/silica nanocomposite on the nucleation and growth behavior of apatite layer. J Biomed Mater Res A 67:1131–1138

    Article  Google Scholar 

  45. Reddi AH (1994) Symbiosis of biotechnology and biomaterials: applications in tissue engineering of bone and cartilage. J Cell Biochem 56:192–195

    Article  CAS  Google Scholar 

  46. Chen QZ, Efthymiou A, Salih V, Boccaccini AR (2008) Biogalss®-derived glass ceramic scaffolds: study of cell proliferation and scaffold degradation in vitro. J Biomed Mater Res A 84:1049–1060

    Article  CAS  Google Scholar 

  47. Low SP, Williams KA, Canham LT, Voelcker NH (2006) Evaluation of mammalian cell adhesion on surface modified porous silicon. Biomaterials 27:4538–4546

    Article  CAS  Google Scholar 

  48. Lee JY, Kang BS, Hicks B, Chancellor TF, Chu BH et al (2008) The control of cell adhesion and viability by zinc oxide nanorods. Biomaterials 29:3743–3749

    Article  CAS  Google Scholar 

  49. Chou SY, Cheng CM, LeDuc PR (2009) Composite polymer systems with control of local substrate elasticity and their effect on cytoskeletal and morphological characteristics of adherent cells. Biomaterials 30:3136–3142

    Article  CAS  Google Scholar 

  50. Wu C, Ramaswmy Y, Zhu YF, Zheng R, Appleyard R et al (2009) The effect of mesoporous bioactive glass on the physiochemical, biological and drug-release properties of poly(dl-lactide-co-glycolide) films. Biomaterials 30:2199–2208

    Article  CAS  Google Scholar 

  51. Huang YC, Vieira A, Huang KL, Yeh MK, Chiang CH (2005) Pulmonary inflammation caused by chitosan microparticles. J Biomed Mater Res 75A:283–287

    Article  CAS  Google Scholar 

  52. Fakhry A, Schneider GB, Zaharias R, Senel S (2004) Chitosan supports the initial attachment and spreading of osteoblasts preferentially over fibroblasts. Biomaterials 25:2075–2079

    Article  CAS  Google Scholar 

  53. Hsiao SW, Thien DVH, Ho MH, Hsieh HJ, Li CH, Hung CH, Li HH (2010) Interactions between chitosan and cells measured by AFM. Biomed Mater 5:054117–054125

    Article  Google Scholar 

  54. Akmal M, Singh A, Anand A, Kesani A, Aslam N, Goodship A, Bentley G (2005) The effects of hyaluronic acid on articular chondrocytes. J Bone Joint Surg Br 87B:1143–1149

    Article  Google Scholar 

  55. Weiss DD, Sachs MA, Woodard CR (2003) Calcium phosphate bone cements: a comprehensive review. J Long Term Eff Med Implant 13:41–47

    Article  CAS  Google Scholar 

  56. Schmitz JP, Hollinger JO, Milan SB (1999) Reconstruction of bone using calcium phosphate bone cements: a critical review. J Oral Maxillofac Surg 57:1122–1126

    Article  CAS  Google Scholar 

  57. Takai Y, Miyoshi J, Ikeda W, Ogita H (2008) Nectins and nectin-like molecules: roles in contact inhibition of cell movement and proliferation. Nat Rev Mol Cell Biol 9:603–615

    Article  CAS  Google Scholar 

  58. Heckman CA (2009) Contact inhibition revisited. J Cell Physiol 220:574–575

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Iran National Science Foundation (INSF) for the financial support of this work through Grant No. 89001740.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Nezafati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hesaraki, S., Nezafati, N. In vitro biocompatibility of chitosan/hyaluronic acid-containing calcium phosphate bone cements. Bioprocess Biosyst Eng 37, 1507–1516 (2014). https://doi.org/10.1007/s00449-013-1122-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-1122-0

Keywords

Navigation