Advertisement

Bioprocess and Biosystems Engineering

, Volume 37, Issue 7, pp 1385–1400 | Cite as

Patterns of major metabolites biosynthesis by different mushroom fungi grown on glucose-based submerged cultures

  • Panagiota Diamantopoulou
  • Seraphim Papanikolaou
  • Michael Komaitis
  • George Aggelis
  • Antonios PhilippoussisEmail author
Original Paper

Abstract

The biosynthetic potential of four basidiomycetes (Agrocybe aegerita, Flammulina velutipes, Ganoderma applanatum and Pleurotus pulmonarius) and one ascomycete (Morchella esculenta) was examined in regard to biomass, intracellular (endopolysaccharides and lipids) and extracellular (exopolysaccharides) compounds’ production in liquid media with glucose as substrate, in static and agitated cultures. Exopolysaccharides’ production presented significant negative correlation with biomass, endopolysaccharides and lipids, while biomass was positively related to the production of endopolysaccharides and lipids. Maximum values of biomass, endo- and exo-polysaccharides obtained were quite impressive: P. pulmonarius produced 22.5 g/L of biomass, A. aegerita 60.4 % (w/w) of endopolysaccharides and F. velutipes 1.2 g/L of exopolysaccharides. Polysaccharides and lipids synthesized at the early growth stages were subjected to degradation as the fermentation proceeded. Mycelial lipids of all strains were highly unsaturated, dominated by linoleic acid, whereas glucose was the main building block of endopolysaccharides. The ability of the examined mushroom fungi to synthesize in high quantities biomass and polysaccharides, products with biotechnological and medicinal interest, renders these fungi as potential candidates in sugar-based bio-refineries.

Keywords

Agrocybe aegerita Flammulina velutipes Ganoderma applanatum Morchella esculenta Pleurotus pulmonarius Biomass Lipids Polysaccharides Agitation Static 

References

  1. 1.
    Fazenda ML, Seviour R, McNeil B, Harvey LM (2008) Submerged culture fermentation of “Higher Fungi”: the Macrofungi. Adv Appl Microbiol 63:33–103CrossRefGoogle Scholar
  2. 2.
    Philippoussis A, Diamantopoulou P (2011) Agro-food industry wastes and agricultural residues conversion into high value products by mushroom cultivation. In: Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products (ICMBMP7), Arcachon, France, 4–7 October. pp 344–356Google Scholar
  3. 3.
    Zhong JJ, Tang Y-J (2004) Submerged cultivation of medicinal mushrooms for production of valuable bioactive metabolites. Adv Biochem Eng Biotechnol 87:25–59Google Scholar
  4. 4.
    Tang Y-J, Zhu L-W, Li H-M, Li D-S (2007) Submerged culture of mushrooms in bioreactors—challenges, current state-of-the-art, and future prospects. Food Technol Biotechnol 45:221–229Google Scholar
  5. 5.
    Tsioulpas A, Dimou D, Iconomou D, Aggelis G (2002) Phenolic removal in olive oil mill wastes by strains of Pleurotus spp. in respect to their phenol oxidases (laccase) activity. Bioresour Technol 84:251–257CrossRefGoogle Scholar
  6. 6.
    Hsieh C, Hsu TH, Yang FC (2005) Production of polysaccharides of Ganoderma lucidum (CCRC36021) by reusing thin stillage. Proc Biochem 40:909–916CrossRefGoogle Scholar
  7. 7.
    André A, Diamantopoulou P, Philippoussis A, Sarris D, Komaitis M, Papanikolaou S (2010) Biotechnological conversions of bio-diesel derived waste glycerol into added-value compounds by higher fungi: production of biomass, single cell oil and oxalic acid. Ind Crops Prod 31:407–416CrossRefGoogle Scholar
  8. 8.
    Sugitani Chimilovski L, Habu S, Bosqui Teixeira RF, Thomaz-Soccol V, Noseda MD, Pedroni Medeiros AB, Pandey A, Soccol CR (2011) Antitumor activity of Grifola frondosa exopolysaccharides produced by submerged fermentation using sugar cane and say molasses as carbon sources. Food Technol Biotechnol 49(3):359–363Google Scholar
  9. 9.
    Dimou DM, Georgala A, Komaitis M, Aggelis G (2002) Mycelial fatty acid composition of Pleurotus spp. and its application in the intrageneric differentiation. Mycol Res 106:925–929CrossRefGoogle Scholar
  10. 10.
    Pedneault K, Angers P, Gosselin A, Tweddell RJ (2008) Fatty acid profiles and neutral lipids of ten species of higher basidiomycetes indigenous to eastern Canada. Mycol Res 112:1428–1434CrossRefGoogle Scholar
  11. 11.
    Diamantopoulou P, Papanikolaou S, Kapoti M, Komaitis M, Aggelis G, Philippoussis A (2012) Mushroom polysaccharides and lipids synthesized in liquid agitated and static cultures. Part I: screening various mushroom species. Appl Biochem Biotechnol 167:536–551CrossRefGoogle Scholar
  12. 12.
    Fang QH, Zhong JJ (2002) Submerged fermentation of higher fungus Ganoderma lucidum for production of valuable bioactive metabolites-ganoderic acid and polysaccharide. Biochem Eng J 10:61–65CrossRefGoogle Scholar
  13. 13.
    Fang QH, Zhong JJ (2002) Effect of initial pH on production of ganoderic acid and polysaccharide by submerged fermentation of Ganoderma lucidum. Proc Biochem 37:769–774CrossRefGoogle Scholar
  14. 14.
    Mau JL, Chyau CC, Li JY, Tseng YH (1997) Flavor compounds in straw mushrooms Volvariella volvacea harvested as different stages of maturity. J Agricl Food Chem 45:4726–4729CrossRefGoogle Scholar
  15. 15.
    Wasser SP (2002) Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol 60:258–274CrossRefGoogle Scholar
  16. 16.
    Yang FC, Liau CB (1998) The influence of environmental conditions on polysaccharide formation by Ganoderma lucidum in submerged cultures. Proc Biochem 33(5):547–553CrossRefGoogle Scholar
  17. 17.
    Lee BC, Bae JT, Pyo HB, Choe TB, Kim SW, Hwang HJ, Yun JW (2004) Submerged culture conditions for the production of mycelial biomass and exopolysacchrides by the edible basidiomycete Grifola frondosa. Enzyme Microb Technol 35:369–376CrossRefGoogle Scholar
  18. 18.
    Papinutti L (2010) Effects of nutrients, pH and water potential on exopolysaccharides production by fungal strain belonging to Ganoderma lucidum complex. Bioresour Technol 101:1941–1946CrossRefGoogle Scholar
  19. 19.
    Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal Chem 31:426–428CrossRefGoogle Scholar
  20. 20.
    Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  21. 21.
    Liang Y, Sarkany N, Cui Y, Blackburn JW (2010) Batch stage study of lipid production from crude glycerol derived from yellow grease or animal fats through microagal fermentation. Bioresour Technol 101:6745–6750CrossRefGoogle Scholar
  22. 22.
    Folch J, Lees M, Sloane-Stanley G (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 199:833–841Google Scholar
  23. 23.
    Fakas S, Galiotou-Panayotou M, Papanikolaou S, Komaitis M, Aggelis G (2007) Compositional shifts in lipid fractions during lipid turnover in Cunninghamella echinulata. Enzyme Microb Technol 40:1321–1327CrossRefGoogle Scholar
  24. 24.
    Xu CP, Yun JW (2004) Influence of aeration on the production and the quality of the exopolysaccharides from Paecilomyces tenuipes C240 in a stirred-tank fermenter. Enzyme Microb Technol 35:33–39CrossRefGoogle Scholar
  25. 25.
    El-Dein MMN, El-Fallal AA, El-Shahat Toson A, Faten EH (2004) Exopolysaccharides production by Pleurotus pulmonarius: factors affecting formation and their structures. Pak J Biol Sci 7(6):1078–1084CrossRefGoogle Scholar
  26. 26.
    Meng F, Liu X, Jia LL, Song Z, Deng P, Fan K (2010) Optimization for the production of exopolysaccharides from Morchella esculenta SO-02 in submerged culture and its antioxidant activities in vitro. Carbohyd Polym 79:700–704CrossRefGoogle Scholar
  27. 27.
    Xu H, Sun LP, Shi YZ, Wu YH, Zhang B, Zhao DQ (2008) Optimization of cultivation conditions for extracellular polysaccharide and mycelium biomass by Morchella esculenta As51620. Biochem Eng J 39:66–73CrossRefGoogle Scholar
  28. 28.
    Lee WY, Park Y, Ahn JK, Ka KH, Park SY (2007) Factors influencing the production of endopolysaccharide and exopolysaccharide from Ganoderma applanatum. Enzyme Microb Technol 40:249–254CrossRefGoogle Scholar
  29. 29.
    Maziero R, Cavazzoni V, Bononi VLR (1999) Screening of basidiomycetes for the production of exopolysaccharide and biomass in submerged culture. Revista de Microbiologia 30:77–84CrossRefGoogle Scholar
  30. 30.
    Kim HO, Lim JM, Joo JH, Hwang HJ, Choi JW, Yun JW (2005) Optimization of submerged culture condition for the production of mycelial biomass and exopolysaccharides by Agrocybe cylindracea. Bioresour Technol 96:1175–1182CrossRefGoogle Scholar
  31. 31.
    Tang YJ, Zhong JJ (2004) Modeling the kinetics of cell growth and ganoderic acid production in liquid static cultures of the medicinal mushroom Ganoderma lucidum. Biochem Eng J 21(3):259–264CrossRefGoogle Scholar
  32. 32.
    Confortin FG, Marchetto R, Bettin F, Camassola M, Salvador M, Pinheiro Dillon AJ (2008) Production of Pleurotus sajor-caju strain PS-2001 biomass in submerged culture. J Ind Microbiol Biotechnol 35(10):1149–1155CrossRefGoogle Scholar
  33. 33.
    Elisashvili VI, Tsiklauri N, Khardziani T, Metreveli E, Asatiani M, Songulashvili G, Kobakhidze A (2009) Prospects of Basidiomycetes potential application in white biotechnology. New Biotechnol 25:S192CrossRefGoogle Scholar
  34. 34.
    Smiderle FR, Olsen LM, Ruthes AC, Czelusniak PA, Santana-Filho AP, Sassaki GL, Gorin PAJ, Iacomini M (2012) Exopolysaccharides, proteins and lipids in Pleurotus pulmonarius submerged culture using different carbon sources. Carbohyd Polym 87(1):368–377CrossRefGoogle Scholar
  35. 35.
    Berovič M, Habanič J, Zore I, Wraber B, Hodžar D, Boh B, Pohlven F (2003) Submerged cultivation of Ganoderma lucidum biomass and immunostimulatory effects of fungal polysaccharides. J Biotechnol 103:77–86CrossRefGoogle Scholar
  36. 36.
    Park JP, Kim YM, Kim SW, Hwang HJ, Cho YJ, Lee YS, Song CH, Yun JW (2002) Effect of agitation intensity on the exo-biopolymer production and mycelia morphology in Cordyceps militaris. Enzyme Microb Technol 34:433–438Google Scholar
  37. 37.
    Diamantopoulou P, Papanikolaou S, Katsarou E, Komaitis M, Aggelis G, Philippoussis A (2012) Mushroom polysaccharides and lipids synthesized in liquid agitated and static cultures. Part II: study of Volvariella volvacea. Appl Biochem Biotechnol 167:1890–1906CrossRefGoogle Scholar
  38. 38.
    Tang YJ, Zhong JJ (2003) Role of oxygen supply in submerged fermentation of Ganoderma lucidum for production of Ganoderma polysaccharide and ganoderic acid. Enzyme Microb Technol 32:478–484CrossRefGoogle Scholar
  39. 39.
    Hsieh C, Tseng MH, Liu CJ (2006) Production of polysaccharides from Ganoderma lucidum (CCRC 36041) under limitations of nutrients. Enzyme Microb Technol 38:109–117CrossRefGoogle Scholar
  40. 40.
    Ruíz-Herrera J, Osorio E (1974) Isolation and chemical analysis of the cell wall of Morchella sp. Antonie van Leewenhoek 40:57–64CrossRefGoogle Scholar
  41. 41.
    Fang QH, Tang YJ, Zhong JJ (2002) Significance of inoculation density control in production of polysaccharide and ganoderic acid by submerged culture of Ganoderma lucidum. Proc Biochem 37:1375–1379CrossRefGoogle Scholar
  42. 42.
    Tang YJ, Zhu LL, Li DS, Mi ZY, Li HM (2008) Significance of inoculation density and carbon source on the mycelial growth and Tuber polysaccharides production by submerged fermentation of Chinese truffle Tuber sinense. Proc Biochem 43:576–586CrossRefGoogle Scholar
  43. 43.
    Zhou Y, Hong-bo S, Chen D (2009) Effects of organic nitrogen and carbon sources on mycelial growth and polysaccharides production and their optimization in the submerged culture of Grifola umbellate, a Chinese medicinal herb. African J Biotechnol 8(20):5202–5214Google Scholar
  44. 44.
    Piston SM, Seviour RJ, McDougall BM (1993) Noncellulolytic fungal β-glucanases: their physiology and regulation. Enzyme Microb Technol 15:178–192CrossRefGoogle Scholar
  45. 45.
    Amir R, Levanon D, Hadar Y, Chet I (1995) Factors affecting translocation and sclerotial formation in Morchella esculenta. Exp Mycol 19:61–70CrossRefGoogle Scholar
  46. 46.
    Papanikolaou S, Aggelis G (2011) Lipids of oleaginous yeasts. Part II: technology and potential applications. Eur J Lipid Sci Technol 113:1052–1073CrossRefGoogle Scholar
  47. 47.
    Stajić M, Glamočlija J, Maksimović V, Vukojević J, Simonić J, Zervakis G (2011) A comparative study of the potential of polysaccharide production and intracellular sugar composition within Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W.Curt.:Fr.) P. Karst. (Aphyllophoromycetideae). Int J Med Mushr 13(2):153–158CrossRefGoogle Scholar
  48. 48.
    Hammond JBW, Nichols R (1976) Carbohydrate metabolism in Agaricus bisporus (Lange) Sing.: changes in soluble carbohydrates during growth of mycelium and sporophore. J Gen Microbiol 93:309–320CrossRefGoogle Scholar
  49. 49.
    Byrne PFC, Brennan PJ (1975) The lipids of Agaricus bisporus. J Gen Microbiol 89:245–255CrossRefGoogle Scholar
  50. 50.
    Nair NG, Song CH, Jiang JH, Vine JH, Tattum B, Cho KY (1989) Lipid profile of Pleurotus sajor-caju. Annals Appl Biol 114:167–176CrossRefGoogle Scholar
  51. 51.
    Sumner JL (1973) The fatty acid composition of basidiomycetes. N Z J Bot 11:435–442CrossRefGoogle Scholar
  52. 52.
    Tsai SY, Weng CC, Huang SJ, Chen CC, Mau JL (2006) Nonvolatile taste components of Grifola frondosa, Morchella esculenta and Termitomyces albuminosus mycelia. LWT-Food Sci Technol 39:1066–1071CrossRefGoogle Scholar
  53. 53.
    Tseng HY, Lee LY, Li RC, Mau JL (2005) Non-volatile flavour components of Ganoderma tsugae. Food Chem 90:409–425CrossRefGoogle Scholar
  54. 54.
    Li Y, Cho KY, Wu YZ, Nair NG (1992) The effect of lipids and temperature on the physiology and growth of Volvariella volvacea. World J Microbiol Biotechnol 8:621–626CrossRefGoogle Scholar
  55. 55.
    Tang YJ, Zhong JJ (2002) Fed-batch fermentation of Ganoderma lucidum for hyperproduction of polysaccharide and ganoderic acid. Enzyme Microb Technol 31:20–28CrossRefGoogle Scholar
  56. 56.
    Hadar Y, Cohen-Arazi E (1986) Chemical composition of the edible mushroom Pleurotus ostreatus produced by fermentation. Appl Environ Microbiol 51(6):1352–1354Google Scholar
  57. 57.
    Chang S-T, Miles PG (2004) Mushrooms: cultivation, nutritional value, medicinal effect and environmental impact, 2nd edn. CRC Press LLC, Boca RatonCrossRefGoogle Scholar
  58. 58.
    Pokhrel CP, Ohga S (2007) Submerged culture conditions for mycelia yield and polysaccharides production by Lyophyllum decastes. Food Chem 105:641–646CrossRefGoogle Scholar
  59. 59.
    Shtahl PD, Klug MJ (1996) Characterization and differentiation of filamentous fungi based on fatty acid composition. Appl Environ Microbiol 62(11):4136–4146Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Panagiota Diamantopoulou
    • 1
  • Seraphim Papanikolaou
    • 2
  • Michael Komaitis
    • 2
  • George Aggelis
    • 3
    • 4
  • Antonios Philippoussis
    • 1
    Email author
  1. 1.Laboratory of Edible FungiInstitute of Technology of Agricultural Products (ITAP), Hellenic Agricultural Organization-DemeterLykovryssi, AttikiGreece
  2. 2.Department of Food Science and TechnologyAgricultural University of AthensAthensGreece
  3. 3.Unit of Microbiology, Division of Genetics, Cell Biology and Development, Department of BiologyUniversity of PatrasPatrasGreece
  4. 4.Department of Biological SciencesKing AbdulAziz UniversityJeddahSaudi Arabia

Personalised recommendations