Skip to main content
Log in

Assessment of robustness against dissolved oxygen/substrate oscillations for C. glutamicum DM1933 in two-compartment bioreactor

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Corynebacterium glutamicum is an important organism for industrial biotechnology; particularly, in amino acid production (e.g. l-lysine). Production scales often reach reactor working volumes of several hundred cubic meters, which triggers inhomogeneous distribution of substrates and dissolved gasses due to increasing mixing times. Individual cells which follow the flow profile through the reactor are experiencing oscillating microenvironments. Oscillations can have an influence on the process performance, which is a subject of scale-down experiments. In this work, l-lysine-producing C. glutamicum DM1933 was assessed for its robustness against continuous dissolved oxygen and substrate supply oscillation in two-compartment scale-down bioreactors. Aerobic, substrate-limited stirred tank and non-aerated, substrate-excess plug flow compartments were applied for oscillation. Inhomogeneity of substrate and oxygen supply was observed to cause rapid side product turnover, redistribution of oxygen uptake from oxygen limited into fully aerobic zones, and intermediate medium acidification. However, process inhomogeneity did not impair productivity or growth at plug flow residence times of several minutes. In a focused analysis of proteome, metabolome, transcriptome, and other physiological parameters, no changes were identified in response to process inhomogeneity. In conclusion, fed-batch processes with C. glutamicum DM1933 possess remarkable robustness against oxygen and substrate supply oscillation, which is a unique property in the field of published scale-down studies. Microbial physiology of C. glutamicum appears to be ideally adapted to both homogeneous and inhomogeneous conditions. This ensures exceptional suitability for cultivation at increased mixing times, which is suggested to constitute an important basis for the long-lasting success in large scale bioprocess application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bartek T, Blombach B, Zönnchen E et al (2009) Importance of NADPH supply for improved l-valine formation in Corynebacterium glutamicum. Biotechnol Prog 26(2):361–371. doi:10.1002/btpr.345

    Google Scholar 

  2. Blombach B, Schreiner ME, Bartek T et al (2008) Corynebacterium glutamicum tailored for high-yield l-valine production. Appl Microbiol Biotechnol 79(3):471–479. doi:10.1007/s00253-008-1444-z

    Article  CAS  Google Scholar 

  3. van Ooyen J, Noack S, Bott M et al (2012) Improved l-lysine production with Corynebacterium glutamicum and systemic insight into citrate synthase flux and activity. Biotechnol Bioeng 109(8):2070–2081. doi:10.1002/bit.24486

    Article  Google Scholar 

  4. Lara AR, Galindo E, Ramírez OT et al (2006) Living with heterogeneities in bioreactors: understanding the effects of environmental gradients on cells. Mol Biotechnol 34(3):355–381. doi:10.1385/MB:34:3:355

    Article  CAS  Google Scholar 

  5. Oosterhuis NM, Kossen NW (1984) Dissolved oxygen concentration profiles in a production-scale bioreactor. Biotechnol Bioeng 26(5):546–550. doi:10.1002/bit.260260522

    Article  CAS  Google Scholar 

  6. Mayr B, Moser A, Nagy E et al (1994) Scale-up on basis of structured mixing models: a new concept. Biotechnol Bioeng 43(3):195–206. doi:10.1002/bit.260430303

    Article  CAS  Google Scholar 

  7. Junker BH (2004) Scale-up methodologies for Escherichia coli and yeast fermentation processes. J Biosci Bioeng 97(6):347–364. doi:10.1016/S1389-1723(04)70218-2

    Article  CAS  Google Scholar 

  8. Neubauer P, Junne S (2010) Scale-down simulators for metabolic analysis of large-scale bioprocesses. Curr Opin Biotechnol 21(1):114–121. doi:10.1016/j.copbio.2010.02.001

    Article  CAS  Google Scholar 

  9. Takors R (2012) Scale-up of microbial processes: impacts, tools and open questions. J Biotechnol 160(1–2):3–9. doi:10.1016/j.jbiotec.2011.12.010

    Article  CAS  Google Scholar 

  10. Oosterhuis NM, Kossen NW, Olivier AP et al (1985) Scale-down and optimization studies of the gluconic acid fermentation by Gluconobacter oxydans. Biotechnol Bioeng 27(5):711–720. doi:10.1002/bit.260270521

    Article  CAS  Google Scholar 

  11. Larsson G, Enfors S (1988) Studies of insufficient mixing in bioreactors: effects of limiting oxygen concentrations and short term oxygen starvation on Penicillium chrysogenum. Bioprocess Biosyst Eng 3(3):123–127. doi:10.1007/BF00373475

    Article  CAS  Google Scholar 

  12. Junne S, Klingner A, Kabisch J et al (2011) A two-compartment bioreactor system made of commercial parts for bioprocess scale-down studies: impact of oscillations on Bacillus subtilis fed-batch cultivations. Biotechnol J 6(8):1009–1017. doi:10.1002/biot.201100293

    Article  CAS  Google Scholar 

  13. Amanullah A, McFarlane CM, Emery AN et al (2001) Scale-down model to simulate spatial pH variations in large-scale bioreactors. Biotechnol Bioeng 73(5):390–399

    Article  CAS  Google Scholar 

  14. Delvigne F, Destain J, Thonart P (2006) A methodology for the design of scale-down bioreactors by the use of mixing and circulation stochastic models. Biochem Eng J 28(3):256–268. doi:10.1016/j.bej.2005.11.009

    Article  CAS  Google Scholar 

  15. Enfors SO, Jahic M, Rozkov A et al (2001) Physiological responses to mixing in large scale bioreactors. J Biotechnol 85(2):175–185

    Article  CAS  Google Scholar 

  16. Schilling BM, Pfefferle W, Bachmann B et al (1999) A special reactor design for investigations of mixing time effects in a scaled-down industrial l-lysine fed-batch fermentation process. Biotechnol Bioeng 64(5):599–606

    Article  CAS  Google Scholar 

  17. Blombach B, Hans S, Bathe B et al (2009) Acetohydroxyacid synthase, a novel target for improvement of l-lysine production by Corynebacterium glutamicum. Appl Environ Microbiol 75(2):419–427. doi:10.1128/AEM.01844-08

    Article  CAS  Google Scholar 

  18. Atkinson DE, Walton GM (1967) Adenosine triphosphate conservation in metabolic regulation. Rat liver citrate cleavage enzyme. J Biol Chem 242(13):3239–3241

    CAS  Google Scholar 

  19. Bartek T, Makus P, Klein B et al (2008) Influence of l-isoleucine and pantothenate auxotrophy for l-valine formation in Corynebacterium glutamicum revisited by metabolome analyses. Bioprocess Biosyst Eng 31(3):217–225. doi:10.1007/s00449-008-0202-z

    Article  CAS  Google Scholar 

  20. Link H, Anselment B, Weuster-Botz D (2010) Rapid media transition: an experimental approach for steady state analysis of metabolic pathways. Biotechnol Prog 26(1):1–10. doi:10.1002/btpr.290

    CAS  Google Scholar 

  21. Inui M, Murakami S, Okino S et al (2004) Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol 7(4):182–196. doi:10.1159/000079827

    Article  CAS  Google Scholar 

  22. Yamamoto S, Sakai M, Inui M et al (2011) Diversity of metabolic shift in response to oxygen deprivation in Corynebacterium glutamicum and its close relatives. Appl Microbiol Biotechnol 90(3):1051–1061. doi:10.1007/s00253-011-3144-3

    Article  CAS  Google Scholar 

  23. Follmann M, Ochrombel I, Krämer R et al (2009) Functional genomics of pH homeostasis in Corynebacterium glutamicum revealed novel links between pH response, oxidative stress, iron homeostasis and methionine synthesis. BMC Genomics 10(1):621. doi:10.1186/1471-2164-10-621

    Article  Google Scholar 

  24. Sandoval-Basurto EA, Gosset G, Bolívar F et al (2005) Culture of Escherichia coli under dissolved oxygen gradients simulated in a two-compartment scale-down system: metabolic response and production of recombinant protein. Biotechnol Bioeng 89(4):453–463. doi:10.1002/bit.20383

    Article  CAS  Google Scholar 

  25. Inui M, Suda M, Okino S et al. (2007) Transcriptional profiling of Corynebacterium glutamicum metabolism during organic acid production under oxygen deprivation conditions. Microbiology (Reading, Engl.) 153(Pt 8):2491–2504. doi: 10.1099/mic.0.2006/005587-0

  26. Lin HY, Mathiszik B, Xu B et al (2001) Determination of the maximum specific uptake capacities for glucose and oxygen in glucose-limited fed-batch cultivations of Escherichia coli. Biotechnol Bioeng 73(5):347–357

    Article  CAS  Google Scholar 

  27. Neubauer P, Lin HY, Mathiszik B (2003) Metabolic load of recombinant protein production: inhibition of cellular capacities for glucose uptake and respiration after induction of a heterologous gene in Escherichia coli. Biotechnol Bioeng 83(1):53–64. doi:10.1002/bit.10645

    Article  CAS  Google Scholar 

  28. Keilhauer C, Eggeling L, Sahm H (1993) Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon. J Bacteriol 175(17):5595–5603

    CAS  Google Scholar 

  29. El Massaoudi M, Spelthahn J, Drysch A et al (2003) Production process monitoring by serial mapping of microbial carbon flux distributions using a novel sensor reactor approach: I-Sensor reactor system. Metab Eng 5(2):86–95

    Article  Google Scholar 

  30. Levenspiel O (1972) Chemical reaction engineering, 2nd edn. Wiley, New York

    Google Scholar 

  31. Junne S, Nicolas Cruz-Bournazou M, Angersbach A et al (2010) Electrooptical monitoring of cell polarizability and cell size in aerobic Escherichia coli batch cultivations. J Ind Microbiol Biotechnol 37(9):935–942. doi:10.1007/s10295-010-0742-5

    Article  CAS  Google Scholar 

  32. Paczia N, Nilgen A, Lehmann T et al (2012) Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms. Microb Cell Fact 11(1):122. doi:10.1186/1475-2859-11-122

    Article  CAS  Google Scholar 

  33. Voges R, Noack S (2012) Quantification of proteome dynamics in Corynebacterium glutamicum by (15)N-labeling and selected reaction monitoring. J Proteomics 75(9):2660–2669. doi:10.1016/j.jprot.2012.03.020

    Article  CAS  Google Scholar 

  34. Möker N, Brocker M, Schaffer S et al (2004) Deletion of the genes encoding the MtrA-MtrB two-component system of Corynebacterium glutamicum has a strong influence on cell morphology, antibiotics susceptibility and expression of genes involved in osmoprotection. Mol Microbiol 54(2):420–438. doi:10.1111/j.1365-2958.2004.04249.x

    Article  Google Scholar 

  35. Frunzke J, Engels V, Hasenbein S et al (2008) Co-ordinated regulation of gluconate catabolism and glucose uptake in Corynebacterium glutamicum by two functionally equivalent transcriptional regulators, GntR1 and GntR2. Mol Microbiol 67(2):305–322. doi:10.1111/j.1365-2958.2007.06020.x

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Bundesministerium für Bildung und Forschung (BMBF) for funding in the cluster project “Corynebacterium: Improving flexibility and fitness for industrial production” (Grant No. 0315589A), and the fruitful cooperation with industrial project partner Evonik Industries. The authors also thank Nicole Paczia, Max von Haugwitz, Petra Geilenkirchen, and Matthias Moch for guidance and conduction of metabolome analysis procedures, and express special thanks to Raphael Voges for the conduction of targeted proteome analysis by a recently established protocol.

Conflict of interest

The authors have declared that no competing interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Oldiges.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Käß, F., Hariskos, I., Michel, A. et al. Assessment of robustness against dissolved oxygen/substrate oscillations for C. glutamicum DM1933 in two-compartment bioreactor. Bioprocess Biosyst Eng 37, 1151–1162 (2014). https://doi.org/10.1007/s00449-013-1086-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-1086-0

Keywords

Navigation