Skip to main content
Log in

Physiology of Lichtheimia ramosa obtained by solid-state bioprocess using fruit wastes as substrate

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Due to the amount of nutrients available in the agroindustrial wastes, these can be converted into high added-value products by the action of microorganisms in solid-state bioprocesses. The aim of this work was to evaluate the growth physiology and lipase production of the fungus Lichtheimia ramosa using the following Brazilian savannah fruit wastes as substrates: bocaiuva (Acrocomia aculeata), pequi (Caryocar brasiliense), guavira (Campomanesia pubescens), araticum (Annona crassiflora) and seriguela (Spondias purpurea). These residues were triturated, homogenized, adjusted to pH 5.0 and 60 % moisture, sterilized and packaged in plastic tray-type bioreactors before inoculation with 10 % (w/v) of L. ramosa pre-culture medium. The cultivations were conducted in a bacteriological incubator at 30 °C for 40 days. Samples were taken every 5 days and fungi and bacteria contents, proximate composition and lipase activity were evaluated. The maximum fungal counting was observed between 25 and 35 days. L. ramosa reached the stationary phase next to 40 days in all substrates. Mesophilic and psicrophilic aerobic bacteria were not detected. Protein enrichment was obtained for all media, being superior in seriguela residues (391.66 %), followed by pequi (160.04 %), araticum (143.31 %), guavira (102.42 %), and bocaiuva (67.88 %). Lipase production was observed in all cultivated media, except in pequi residues that showed decreasing lipase activity. The higher production was observed in guavira (1.12 U/g) followed by araticum (0.58 U/g), seriguela (0.41 U/g) and bocaiuva (0.21 U/g) waste substrates. It was concluded that the studied fruit wastes have been successfully utilized as substrates for protein enrichment and lipase production with L. ramosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Borlaug NE (2002) Feeding a world of 10 billion people: the miracle ahead. In: Bailey R (ed) Global warming and other eco-myths. Competitive Enterprise Institute, Roseville, pp 29–60

    Google Scholar 

  2. Silva MR, Lacerda DBCL, Santos GG, Martins DMO (2008) Chemical characterization of native species of fruits from savanna ecosystem. Ciênc Rural 38:1790–1793

    Article  CAS  Google Scholar 

  3. Vera R, Naves RV, Nascimento JL, Chaves LJ, Leandro WM, Souza ERB (2005) Physical characterization of pequi fruits (Caryocar brasiliense Camb.) in Goiás state. Pesq Agropec Trop 35:71–79

    Google Scholar 

  4. Barbosa DCA, Alves JLH, Prazeres SM, Paiva AMA (1989) Phenological data from 10 tree species from caatinga (Alagoinha-PE). Acta Bot Bras 3:109–117

    Article  Google Scholar 

  5. Rodrigues SR, Nantes LR, Souza SR, Abot AR, Uchôa-Fernandes MA (2006) Frugivorous flies (Diptera, Tephritoidea) collected in Aquidauana, MS. Rev Bras Entomol 50:131–134

    Article  Google Scholar 

  6. Couto SR, Sanromán MA (2005) Application of solid-state fermentation to ligninolytic enzyme production. Biochem Eng J 22:211–219

    Article  CAS  Google Scholar 

  7. Raimbault M (1998) General and microbiological aspects of solid substrate fermentation. Electron J Biotechnol 1:1–15

    Article  Google Scholar 

  8. Castilho LR, Mitchell DA, Freire DMG (2009) Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation. Bioresour Technol 100:5996–6009

    Article  CAS  Google Scholar 

  9. Abu OA, Tewe OO, Losel DM, Onifade AA (2000) Changes in lipid, fatty acids and protein composition of sweet potato (Ipomoea batatas) after solid-state fungal fermentation. Bioresour Technol 72:189–192

    Article  CAS  Google Scholar 

  10. Jin B, Yan XQ, Yu Q, Van Leeuwen JH (2002) A comprehensive pilot plant system for fungal biomass protein production and wastewater reclamation. Adv Environ Res 6:179–189

    Article  CAS  Google Scholar 

  11. Fonseca GG, Gandra EA, Sclowitz LF, Antunes APC, Costa JAV (2009) Protein enrichment and digestibility of soft rush (Juncus effusus) and rice residues using edible mushrooms Pleurotus ostreatus and Pleurotus sajor-caju. World J Microb Biot 25:449–456

    Article  CAS  Google Scholar 

  12. Silveira CM, Oliveira MS, Badiale-Furlong E (2010) Lipid content and fatty acid profile of defatted rice bran and wheat bran submitted to solid state fermentation by Aspergillus oryzae. Bol Cent Pesq Proc Alim 28:133–140

    Google Scholar 

  13. Oliveira MS, Feddern V, Kupski L, Cipolatti EP, Badiale-Furlong E, Souza-Soares LA (2011) Changes in lipid, fatty acids and phospholipids composition of whole rice bran after solid-state fungal fermentation. Bioresour Technol 102:8335–8338

    Article  CAS  Google Scholar 

  14. Nigam P, Singh D (1996) Processing of agricultural wastes in solid state fermentation of microbial protein. J Sci Ind Res 55:373–380

    CAS  Google Scholar 

  15. Godoy MG, Gutarra MLE, Maciel FM, Felix SP, Bevilaqua JV, Machado OLT, Freire DMG (2009) Use of a low-cost methodology for biodetoxification of castor bean waste and lipase production. Enzym Microb Tech 44:317–322

    Article  CAS  Google Scholar 

  16. Hernández-Rodríguez B, Córdova J, Bárzana E, Favela-Torres E (2009) Effects of organic solvents on activity and stability of lipases produced by thermotolerant fungi in solid-state fermentation. J Mol Catal B Enzym 61:136–142

    Article  CAS  Google Scholar 

  17. Sun SY, Xu Y, Wang D (2009) Novel minor lipase from Rhizopus chinensis during solid-state fermentation: biochemical characterization and its esterification potential for ester synthesis. Bioresour Technol 100:2607–2612

    Article  CAS  Google Scholar 

  18. Davidson WS, Saxena RK, Ghosh PK, Gupta R, Bradoo S, Gulati R (1999) Microbial lipases: potential biocatalysts for the future industry. Curr Sci 77:101–115

    Google Scholar 

  19. Cavalcanti EDC, Gutarra MLE, Freire DMG, Castilho LR, Júnior GLS (2005) Lipase production by solid-state fermentation in fixed-bed bioreactors. Braz Arch Biol Technol 48:79–84

    Article  Google Scholar 

  20. Carvalho PO, Calafatti SA, Marassi M, Silva DM, Conteseni FJ, Bizaco R, Macedo GA (2005) Potential of enantioselective biocatalysis by microbial lipases. Quím Nova 28:614–621

    Article  CAS  Google Scholar 

  21. Cammarota MC, Freire DMG (2006) A review on hydrolytic enzymes in the treatment of wastewater with high oil and grease content. Bioresour Technol 97:2195–2210

    Article  CAS  Google Scholar 

  22. Freire DMG, Castilho LR (2000) Lipases produced by submerged fermentation and in solid medium. Rev Bras Farm 81:48–56

    CAS  Google Scholar 

  23. Kirk PM, Cannon PF, David JC, Stalpers JA (2001) Ainsworth and Bisby’s dictionary of the Fungi, 9th edn. CABI Publishing, Wallingford

    Google Scholar 

  24. Hoffmann K, Discher S, Voigt K (2007) Revision of the genus Absidia (Mucorales, Zygomycetes) based on physiological, phylogenetic, and morphological characters; thermotolerant Absidia spp. form a coherent group. Mycocladiaceae Fam. nov. Mycol Res 111:1169–1183

    Article  CAS  Google Scholar 

  25. Garcia-Hermoso D, Hoinard D, Gantier JC, Grenouillet F, Dromer F, Dannaouil E (2009) Molecular and phenotypic evaluation of Lichtheimia corymbifera (formerly Absidia corymbifera) complex isolates associated with human Mucormycosis: rehabilitation of L. ramosa. J Clin Microbiol 47:3862–3870

    Article  CAS  Google Scholar 

  26. Guarro J (2011) Taxonomía y biologia de lós causantes de infección em humanos. Enferm Infecc Microbiol Clin 30:33–39

    Article  Google Scholar 

  27. Ghatora SK, Chadha BS, Badhan AK, Saini HS, Bhat MK (2006) Identification and characterization of diverse xylanases from thermophilic and thermotolerant fungi. Bioresources 1:18–33

    Google Scholar 

  28. Silva AM, Henriques MLOF, Barboza AGSDF, Lins CIM, Ribeiro DLR, Albuquerque CDC, Campos-Takaki GM (2011) Color removal of algodoais river water by chitosan obtained from Absidia corymbifera. Asian Chitin J 7:97–104

    Google Scholar 

  29. Neves MLC, Silva MF, Souza-Motta CM, Spier MR, Soccol CR, Porto TSP, Moreira KA, Porto ALF (2011) Lichtheimia blakesleeana as a new potencial producer of phytase and xylanase. Molecules 16:4807–4817

    Article  CAS  Google Scholar 

  30. Silva CAA, Lacerda MPF, Fonseca GG (2013) Biotransformation of pequi and guavira fruit wastes via solid state bioprocess using Pleurotus sajor-caju. Int J Biosci Biochem Bioinf 3:88–92

    CAS  Google Scholar 

  31. AOAC (1995) Association of official analytical chemists. Official methods of analysis, 16th edn. AOAC, Washington

    Google Scholar 

  32. ICMSF (1978) International Commission on Microbiological Specifications for Foods. Microorganisms in foods: their significance and methods of enumeration. University of Toronto Press, Toronto

  33. ICMSF (1986) International Commission on Microbiological Specifications for Foods. Microorganisms in foods. Sampling for microbiological analysis: principles and scientific applications, vol. 2. University of Toronto Press, Toronto

  34. Leite RSR, Bocchini DA, Martins ES, Silva D, Gomes E, Silva R (2007) Production of cellulolytic and hemicellulolytic enzymes from Aureobasidium pulluans on solid state fermentation. Appl Biochem Biotech 137:281–288

    Article  Google Scholar 

  35. Bussamara R, Fuentefria AM, Oliveira ES, Broetto L, Simcikova M, Valente P, Schrank A, Vainstein MH (2010) Isolation of a lipase-secreting yeast for enzyme production in a pilot-plant scale batch fermentation. Bioresour Technol 101:268–275

    Article  CAS  Google Scholar 

  36. Silva WOB, Mitidieri S, Schrank A, Vainstein MH (2005) Production and extraction of an extracellular lipase from the entomopathogenic fungus Metarhizium anisopliae. Process Biochem 40:321–326

    Article  CAS  Google Scholar 

  37. Liu Z, Zhenming C, Wang L, Jing L (2008) Production, purification and characterization of an extracellular lipase from Aureobasidium pullulans HN2.3 with potential application for the hydrolysis of edible oils. Biochem Eng J 40:445–451

    Article  CAS  Google Scholar 

  38. Raimbault M, Revah S, Pina F, Villalobos PJ (1985) Protein enrichment of cassava by solid state fermentation using molds isolated from traditional foods. J Ferment Bioeng 63:395–399

    Google Scholar 

  39. Yang SS, Jang HD, Liew CM, Du-Preez JC (1993) Protein enrichment of sweet potato residue by solid state cultivation with mono-and co-cultures of amylolytic fungi. World J Microb Biot 32:258–264

    Article  Google Scholar 

  40. Yang SS (1988) Protein enrichment of sweet potato residue with amylolytic yeasts by solid-state fermentation. Biotechnol Bioeng 32:886–890

    Article  CAS  Google Scholar 

  41. Silveira CM, Badiale-Furlong E (2007) Characterization of nitrogenated compounds in solid state fermented bran. Cienc Tecnol Aliment 27:805–811

    Article  Google Scholar 

  42. Moda EM, Horii J, Spoto MHF (2005) Edible mushroom Pleurotus sajor-caju production on washed and supplemented sugarcane bagasse. Sci Agric 62:127–132

    Article  Google Scholar 

  43. Araújo LF, Silva FLH, Brito EA, Oliveira S, Santos ES (2008) Protein enrichment of cactus pear with Saccharomyces cerevisiae for ruminants feeding. Arq Bras Med Vet Zootec 60:401–407

    Article  Google Scholar 

  44. Silva CF, Batista LR, Schwan RF (2008) Incidence and distribution of filamentous fungi during fermentation, drying and storage of coffee (Coffea arabica L.) beans. Braz J Microbiol 39:521–526

    Article  Google Scholar 

  45. Amorim GM, Santos TC, Pacheco CSV, Barreto IMA, Freire DMG, Franco M (2012) Fermentation of cocoa meal by Aspergillus niger to obtain lipase.J Est Tecnol Eng 8:24–27

    Google Scholar 

  46. Gombert AK, Pinto AL, Castilho LR, Freire DMG (1999) Lipase production by Penicillium restrictum in solid-state fermentation using babassu oil cake as substrate. Process Biochem 35:85–90

    Article  CAS  Google Scholar 

  47. Rao PV, Jayaraman K, Lakshmanan CM (1993) Production of lipase by Candida rugosa in solid state fermentation. 1: determination of significant process variables. Process Biochem 28:385–389

    Article  CAS  Google Scholar 

  48. Hiane PA, Ramos MIL, Ramos-Filho MM, Pereira JG (1992) Proximate composition and fatty acid profile of some native fruits of the state of Mato Grosso do Sul. Bol Cent Pesq Proc Alim 10:35–42

    Google Scholar 

  49. Mariano RGB, Couri S, Freitas SP (2009) Enzymatic technology to improve oil extraction from Caryocar brasiliense Camb (pequi) pulp. Rev Bras Frutic 31:637–643

    Article  Google Scholar 

  50. Chartrain M, Marcin C, Katz L, Salmon P, Brix T, Buckland B, Greasham R (1993) Enhancement of lipase production during fedbatch cultivation of Pseudomonas aeruginosa MB5001. J Ferment Bioeng 76:487–492

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support provided by the Scientific and Technological Research National Council of Brazil (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Graciano Fonseca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Andrade Silva, C.A., Lacerda, M.P.F., Leite, R.S.R. et al. Physiology of Lichtheimia ramosa obtained by solid-state bioprocess using fruit wastes as substrate. Bioprocess Biosyst Eng 37, 727–734 (2014). https://doi.org/10.1007/s00449-013-1043-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-1043-y

Keywords

Navigation