Skip to main content
Log in

A label-free immunosensor for determination of salbutamol based on localized surface plasmon resonance biosensing

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

We developed a localized surface plasmon resonance (LSPR)-based label-free optical biosensor for detection of salbutamol (Sal). Hollow gold nanoparticles (HGNs) which deposited on transparent indium tin oxide (ITO) film coated glass was used to sensing platform. Antibody against Sal was immobilized on HGN surface to recognize the target Sal molecules. Thus, the change of LSPR peak was proportional to the concentration of Sal in the solution. The experimental results demonstrated that the LSPR immunosensor possessed a good sensitivity and a high selectivity for Sal. The detection range for Sal was from 0.05 to 0.8 μg/mL with a correlation coefficient of 0.996. The biosensor was applied for the detection for Sal in spiked animal feed and pork liver samples, and the recoveries were in the range of 97–105 %. Therefore, it is expected that this approach may offer a new method in designing label-free LSPR immunosensor for detection of small molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111:3828–3857

    Article  CAS  Google Scholar 

  2. Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108:494–521

    Article  CAS  Google Scholar 

  3. Chen H, Ming T, Zhao L, Wang F, Sun L, Wang J, Yan C (2010) Plasmon—molecule interactions. Nano Today 5:494–505

    Article  CAS  Google Scholar 

  4. Sepúlveda B, Angelomé PC, Lechuga LM, Liz-Marzán LM (2009) LSPR-based nanobiosensors. Nano Today 4:244–251

    Article  CAS  Google Scholar 

  5. Shon Y, Choi HY, Guerrero MS, Kwon C (2009) Preparation of nanostructured film arrays for transmission localized surface plasmon sensing. Plasmonics 4:95–105

    Article  CAS  Google Scholar 

  6. Endo T, Kerman K, Nagatani N, Takamura Y, Tamiya E (2005) Label-free detection of peptide nucleic acid-DNA hybridization using localized surface plasmon resonance based optical biosensor. Anal Chem 77:6976–6984

    Article  CAS  Google Scholar 

  7. Nath N, Chilkoti A (2004) Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size. Anal Chem 76:5370–5378

    Article  CAS  Google Scholar 

  8. Li C, Wu C, Zheng J, Lai J, Zhang C, Zhao Y (2010) LSPR sensing of molecular biothiols based on noncoupled gold nanorods. Langmuir 26:9130–9135

    Article  CAS  Google Scholar 

  9. Vestergaard M, Kerman K, Kim D, Hiep HM, Tamiya E (2008) Detection of Alzheimer’s tau protein using localized surface plasmon resonance-based immunochip. Talanta 74:1038–1042

    Article  CAS  Google Scholar 

  10. Wang C, Ma Z, Wang T, Su Z (2006) Synthesis, assembly, and biofunctionalization of silica-coated gold nanorods for colorimetric biosensing. Adv Funct Mater 16:1673–1678

    Article  CAS  Google Scholar 

  11. Mayer KM, Lee S, Liao H, Rostro BC, Fuentes A, Scully PT, Nehl CL, Hafner JH (2008) A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods. ACS Nano 2:687–692

    Article  CAS  Google Scholar 

  12. Fan M, Thompson M, Andrade ML, Brolo AG (2010) Silver nanoparticles on a plastic platform for localized surface plasmon resonance biosensing. Anal Chem 82:350–6352

    Article  CAS  Google Scholar 

  13. Miller MM, Lazarides AA (2005) Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment. J Phys Chem B 109:21556–21565

    Article  CAS  Google Scholar 

  14. Wan D, Chen H, Lin Y, Chuang S, Shieh J, Chen S (2009) Using spectroscopic ellipsometry to characterize and apply the optical constants of hollow gold nanoparticles. ACS Nano 3:960–970

    Article  CAS  Google Scholar 

  15. Vongsavat V, Vittur BM, Bryan WW, Kim J, Lee TR (2011) Ultrasmall hollow gold_silver nanoshells with extinctions strongly red-shifted to the near-infrared. ACS Appl Mater Interfaces 3:3616–3624

    Article  CAS  Google Scholar 

  16. Sun Y, Xia Y (2002) Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. Anal Chem 74:5297–5305

    Article  CAS  Google Scholar 

  17. Wang Y, Qian W, Tan Y, Ding S (2008) A label-free biosensor based on gold nanoshell monolayers for monitoring biomolecular interactions in diluted whole blood. Biosens Bioelectron 23:1166–1170

    Article  CAS  Google Scholar 

  18. Hu T, Lin Y, Yan J, Di J (2013) Synthesis of hollow gold nanoparticles on the surface of indium tin oxide glass and their application for plasmonic biosensor. Spectrochim Acta A Mol Biomol Spectrosc 110:72–77

    Article  CAS  Google Scholar 

  19. Sheu S, Lei Y, Tai Y, Chang T, Kuo T (2009) Screening of salbutamol residues in swine meat and animal feed by an enzyme immunoassay in Taiwan. Anal Chim Acta 654:148–153

    Article  CAS  Google Scholar 

  20. Libretto SE (1994) A review of the toxicology of salbutamol (albuterol). Arch Toxicol 68:213–216

    Article  CAS  Google Scholar 

  21. Chai C, Liu G, Li F, Liu X, Yao B, Wang L (2010) Towards the development of a portable sensor based on a molecularly imprinted membrane for the rapid determination of salbutamol in pig urine. Anal Chim Acta 675:185–190

    Article  CAS  Google Scholar 

  22. Mohamed GG, Khalil SM, Zayed MA, El-Shall MAE (2002) 2,6-Dichloroquinone chlorimide and 7,7,8,8-tetracyanoquinodimethane reagents for the spectrophotometric determination of salbutamol in pure and dosage forms. J Pharmaceut Biomed 28:1127–1133

    Article  CAS  Google Scholar 

  23. Basavaiah K, Prameela HC (2003) Three useful bromimetric methods for the determination of salbutamol sulfate. Anal Bioanal Chem 376:879–883

    Article  CAS  Google Scholar 

  24. Mazhara SHRA, Chrystyn H (2009) New HPLC assay for urinary salbutamol concentrations in samples collected post-inhalation. J Pharmaceut Biomed 50:175–182

    Article  CAS  Google Scholar 

  25. Zhang J, Xu Y, Di X, Wu M (2006) Quantitation of salbutamol in human urine by liquid chromatography–electrospray ionization mass spectrometry. J Chromatogr B 831:328–332

    Article  CAS  Google Scholar 

  26. Mikuš P, Valášková I, Havráánek E (2005) Determination of salbutamol in pharmaceuticals by capillary electrophoresis. Arch Pharm Chem Life Sci 338:498–501

    Article  CAS  Google Scholar 

  27. Lindino CA, Bulhões LOS (2007) Determination of fenoterol and salbutamol in pharmaceutical formulations by electrogenerated chemiluminescence. Talanta 72:1746–1751

    Article  CAS  Google Scholar 

  28. Goyal RN, Kaur D, Singh SP, Pandey AK (2008) Effect of graphite and metallic impurities of C60 fullerene on determination of salbutamol in biological fluids. Talanta 75:63–69

    Article  CAS  Google Scholar 

  29. Huang J, Lin Q, Zhang X, He X, Xing X, Lian W, Zuo M, Zhang Q (2011) Electrochemical immunosensor based on polyaniline/poly (acrylic acid) and Au-hybrid graphene nanocomposite for sensitivity enhanced detection of salbutamol. Food Res Int 44:92–97

    Article  CAS  Google Scholar 

  30. Deng J, Song Y, Wang Y, Di J (2010) Label-free optical biosensor based on localized surface plasmon resonance of twin-linked gold nanoparticles electrodeposited on ITO glass. Biosens Bioelectron 26:615–619

    Article  CAS  Google Scholar 

  31. Marinakos SM, Chen S, Chilkoti A (2007) Plasmonic detection of a model analyte in serum by a gold nanorod. Anal Chem 79:5278–5283

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21075086), the Project of Scientific and Technologic Infrastructure of Suzhou (SZS201207) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junwei Di.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, Z., Hu, T., Guo, W. et al. A label-free immunosensor for determination of salbutamol based on localized surface plasmon resonance biosensing. Bioprocess Biosyst Eng 37, 651–657 (2014). https://doi.org/10.1007/s00449-013-1034-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-1034-z

Keywords

Navigation