Skip to main content
Log in

Elicitation and in situ adsorption enhanced secondary metabolites production of Tripterygium wilfordii Hook. f. adventitious root fragment liquid cultures in shake flask and a modified bubble column bioreactor

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The experiments of elicitation and in situ adsorption were conducted in shake flasks and then tested in a modified bubble column bioreactor for enhancing the productions of three active metabolites in Tripterygium wilfordii Hook. f., triptolide, wilforgine and wilforine. Methyl jasmonate was screened out as the elicitor and the non-ionic polymeric ion-exchange resin of Amberlite® XAD-7 was used for in situ product removal and protecting the alkaloids from degradation in the medium. In shake flask experiments, 3.55-fold, 49.11-fold, and 10.40-fold of triptolide, wilforgine, and wilforine, respectively, could be recovered from the medium and XAD-7 resin by elicitation and in situ product removal, compared with the control. The modified 10 L bubble column bioreactor had similar productions of the three active metabolites but needed a further optimization of parameters for better growth of adventitious roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ma J, Brach AR, Liu Q (1999) A revision of the genus Tripterygium (Celastraceae). Edinb J Bot 56:33–46

    Article  Google Scholar 

  2. Brinker AM, Ma J, Lipsky PE, Raskin I (2007) Medicinal chemistry and pharmacology of genus Tripterygium (Celastraceae). Phytochemistry 68:732–766

    Article  CAS  Google Scholar 

  3. Luo DQ, Zhang X, Tian X, Liu JK (2004) Insecticidal compounds from Tripterygium wilfordii active against Mythimna separata. Z Naturforsch C 59:421–426

    CAS  Google Scholar 

  4. Phillips PA, Dudeja V, McCarroll JA, Borja-Cacho D, Dawra RK, Grizzle WE, Vickers SM, Saluja AK (2007) Triptolide induces pancreatic cancer cell death via inhibition of heat shock protein 70. Cancer Res 67:9407–9416

    Article  CAS  Google Scholar 

  5. Beroza M (1952) Alkaloids from Tripterygium wilfordii Hook.: wilforgine and wilfortrine. J Am Chem Soc 74:1585–1588

    Article  CAS  Google Scholar 

  6. Monache FD, Bettolo GBM, Bernays EA (1984) Isolation of insect antifeedant alkaloids from Maytenus rigida (Celastraceae). Zeitschrift für Angewandte Entomologie 97:406–414

    Article  Google Scholar 

  7. Xia Z, Chen J (1990) Alkaloids from stems and leaves of Tripterygium wilfordii. Chin Pham J 25:266–267

    CAS  Google Scholar 

  8. Ramachandra Rao S, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153

    Article  CAS  Google Scholar 

  9. Smetanska I (2008) Production of secondary metabolites using plant cell cultures. Adv Biochem Eng Biotechnol 111:187–228

    CAS  Google Scholar 

  10. Miao GP, Zhu CS, Feng JT, Han J, Song XW, Zhang X (2013) Aggregate cell suspension cultures of Tripterygium wilfordii Hook. f. for triptolide, wilforgine, and wilforine production. Plant Cell Tissue Organ Cult 112:109–116

    Article  CAS  Google Scholar 

  11. Baque MA, Moh SH, Lee EJ, Zhong JJ, Paek KY (2012) Production of biomass and useful compounds from adventitious roots of high-value added medicinal plants using bioreactor. Biotechnol Adv 30:1255–1267

    Article  CAS  Google Scholar 

  12. Kemin D, Yan W (1994) Determination of total alkaloids in different areas and different application parts of Tripterygium Wilfordii and T Hypoglaucun. Chin Tradit Pat Med 16:41–42

    Google Scholar 

  13. Yiming S, Jianzhong X, Zhian W, Xuping Y (2009) Determination of triptolide in different ages of root and different parts of Tripterygium wilfordii Hook f. by HPLC. Chin J Mod Appl Pharm 26:904–906

    Google Scholar 

  14. Gao M, Zhang W, Ruan C (2011) Significantly improved taxuyunnanine C production in cell suspension cultures of Taxus by process intensification of repeated elicitation, sucrose feeding, and in situ adsorption. World J Microbiol Biotechnol 27:2271–2279

    Article  CAS  Google Scholar 

  15. Komaraiah P, Ramakrishna SV, Reddanna P, Kavi Kishor PB (2003) Enhanced production of plumbagin in immobilized cells of Plumbago rosea by elicitation and in situ adsorption. J Biotechnol 101:181–187

    Article  CAS  Google Scholar 

  16. Yan Q, Hu Z, Tan RX, Wu J (2005) Efficient production and recovery of diterpenoid tanshinones in Salvia miltiorrhiza hairy root cultures with in situ adsorption, elicitation and semi-continuous operation. J Biotechnol 119:416–424

    Article  CAS  Google Scholar 

  17. Pauwels L, Inze D, Goossens A (2009) Jasmonate-inducible gene: what does it mean? Trends Plant Sci 14:87–91

    Article  CAS  Google Scholar 

  18. Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206

    Article  CAS  Google Scholar 

  19. Kwon IC, Yoo YJ, Lee JH, Hyun JO (1998) Enhancement of taxol production by in situ recovery of product. Process Biochem 33:701–707

    Article  CAS  Google Scholar 

  20. Brinker AM, Raskin I (2005) Determination of triptolide in root extracts of Tripterygium wilfordii by solid-phase extraction and reverse-phase high-performance liquid chromatography. J Chromatogr A 1070:65–70

    Article  CAS  Google Scholar 

  21. Aoyagi H, Kobayashi Y, Yamada K, Yokoyama M, Kusakari K, Tanaka H (2001) Efficient production of saikosaponins in Bupleurum falcatum root fragments combined with signal transducers. Appl Microbiol Biotechnol 57:482–488

    Article  CAS  Google Scholar 

  22. Chishaki N, Horiguchi T (1997) Responses of secondary metabolism in plants to nutrient deficiency. Soil Sci Plant Nutr 43:987–991

    CAS  Google Scholar 

  23. Wink M (1994) The cell culture medium: a functional extracellular compartment of suspension-cultured cells. Plant Cell Tissue Organ Cult 38:307–319

    Article  CAS  Google Scholar 

  24. Dos Santos RI, Schripsema J, Verpoorte R (1994) Ajmalicine metabolism in Catharanthus roseus cell cultures. Phytochemistry 35:677–681

    Article  Google Scholar 

  25. Pitta-Alvarez SI, Spollansky TC, Giulietti AM (2000) The influence of different biotic and abiotic elicitors on the production and profile of tropane alkaloids in hairy root cultures of Brugmansia candida. Enzyme Microb Tech 26:252–258

    Article  CAS  Google Scholar 

  26. Choi SM, Son SH, Yun SR, Kwon OW, Seon JH, Paek KY (2000) Pilot-scale culture of adventitious roots of ginseng in a bioreactor system. Plant Cell Tissue Organ Cult 62:187–193

    Article  CAS  Google Scholar 

  27. Cui XH, Chakrabarty D, Lee EJ, Paek KY (2010) Production of adventitious roots and secondary metabolites by Hypericum perforatum L. in a bioreactor. Bioresour Technol 101:4708–4716

    Article  CAS  Google Scholar 

  28. Huang WH, Zhang R, Si JP, Guo BL (2008) Examination the contents and qualities of 4 alkaloids in different species of Tripterygium. The fifth national academic meeting of Tripterygium, Taining

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 31272110) and the Special Fund for Agro-scientific Research in the Public Interest (No. 200903052).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. T. Feng or X. Zhang.

Additional information

G. P. Miao and C. S. Zhu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig8

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miao, G.P., Zhu, C.S., Yang, Y.Q. et al. Elicitation and in situ adsorption enhanced secondary metabolites production of Tripterygium wilfordii Hook. f. adventitious root fragment liquid cultures in shake flask and a modified bubble column bioreactor. Bioprocess Biosyst Eng 37, 641–650 (2014). https://doi.org/10.1007/s00449-013-1033-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-1033-0

Keywords

Navigation