Skip to main content
Log in

The effect of heavy metals on microbial community structure of a sulfidogenic consortium in anaerobic semi-continuous stirred tank reactors

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The effect of heavy metals on community structure of a heavy metal tolerant sulfidogenic consortium was evaluated by using a combination of denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene and dissimilatory sulfite reductase (dsrB) gene fragments, 16S rRNA gene cloning analysis and fluorescence in situ hybridization (FISH). For this purpose, four anaerobic semi-continuous stirred tank reactors (referred as R1–R4) were run in parallel for 12 weeks at heavy metal loading rates of 1.5, 3, 4.5 and 7.5 mg l−1 d−1 each of Cu2+, Ni2+, Zn2+, and Cr6+, respectively. The abundance ratio of Desulfovibrio vulgaris detected by FISH to total cell counts was consistent with the obtained results of cloning and DGGE. This indicated that D. vulgaris was dominant in all analyzed samples and played a key role in heavy metal removal in R1, R2, and R3. In contrast, after 4 weeks of operation of R4, a distinct biomass loss was observed and no positive hybridized cells were detected by specific probes for the domain Bacteria, sulfate-reducing bacteria and D. vulgris. High removal efficiencies of heavy metals were achieved in R1, R2 and R3 after 12 weeks, whereas the precipitation of heavy metals in R4 was significantly decreased after 4 weeks and almost not observed after 6 weeks of operation. In addition, the anaerobic bacteria, such as Pertrimonas sulfuriphila, Clostridium sp., Citrobacter amalonaticus, and Klebsiella sp., identified from DGGE bands and clone library were hypothesized as heavy metal resistant bacteria at a loading rate of 1.5 mg l−1 d−1 of Cu2+, Ni2+, Zn2+, and Cr6+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Johnson DB, Hallberg DB (2005) Acid mine drainage remediation option: a review. Sci Total Environ 338:3–14

    Article  CAS  Google Scholar 

  2. Azabou S, Mechichi T, Sayadi S (2007) Zinc precipitation by heavy-metal tolerant sulfate-reducing bacteria enriched on phosphogypsum as a sulfate source. Miner Eng 20:173–178

    Article  CAS  Google Scholar 

  3. Smillie RH, Hunter K, Loutit M (1981) Reduction of chromium (VI) by bacterially produced hydrogen sulfide in a marine environment. Water Res 15:1351–1354

    Article  CAS  Google Scholar 

  4. Chang IS, Kim BH (2007) Effect of sulfate reducing activity on biological treatment of hexavalent chromium [Cr(VI)] contaminated electroplating wastewater under sulfate-rich condition. Chemosphere 68:218–226

    Article  CAS  Google Scholar 

  5. Lovley DR, Phillips EJ (1994) Reduction of chromate by Desulfovibrio vulgaris and its c 3 cytochrome. Appl Environ Microbiol 60:726–738

    CAS  Google Scholar 

  6. Goulhen F, Gloter A, Guyot F, Bruschi M (2006) Cr(VI) detoxification by Desulfovibrio vulgaris strain Hildenborough: microbe-metal interactions studies. Appl Microbiol Biotechnol 71:892–897

    Article  CAS  Google Scholar 

  7. Lenz M, Hullebusch EDV, Hommes G, Corvini PFX, Lens PNL (2008) Selenate removal in methanogenic and sulfate-reducing upflow anaerobic sludge bed reactors. Water Res 42:2184–2194

    Article  CAS  Google Scholar 

  8. Sahinkaya E (2009) Biotreatment of zinc-containing wastewater in sulfidogenic CSTR: performance and artificial neutral network (ANN) modeling studies. J Hazard Mater 164:105–113

    Article  CAS  Google Scholar 

  9. Viggi CC, Pagnanelli F, Cibati A, Uccelletti D, Palleschi C, Toro L (2010) Biotreatment and bioassessment of heavy metal removal by sulfate-reducing bacteria in fixed bed reactors. Water Res 44:151–158

    Article  CAS  Google Scholar 

  10. Li Z, Xu J, Tang C, Wu J, Muhammad A, Wang H (2006) Application of 16S rDNA-PCR amplification and DGGE fingerprinting for detection of shift in microbial community diversity in Cu-, Zn-, and Cd-contaminated paddy soils. Chemosphere 62:1374–1380

    Article  CAS  Google Scholar 

  11. Muyzer G, De Waal ED, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  Google Scholar 

  12. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  Google Scholar 

  13. Loy A, Lehner A, Lee N, Adamczyk J, Meier H, Ernst J, Schleifer KH, Wagner M (2002) Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl Environ Microbiol 68:5064–5081

    Article  CAS  Google Scholar 

  14. Chang YJ, Peacock AD, Long PE, Stephen JR, McKinley JP, Macnaughton SJ, Anwar Hussain AKM, Saxton AM, White DC (2001) Diversity and characterization of sulfate-reducing bacteria in groundwater at a uranium mill tailings site. Appl Environ Microbiol 67:3149–3160

    Article  CAS  Google Scholar 

  15. Nakagawa T, Hanada S, Maruyama A, Marumo K, Urabe T, Fukui M (2002) Distribution and diversity of thermophilic sulfate-reducing bacteria within a Cu-Pb-Zn mine (Toyoha, Japan). Microbiol Ecol 41:199–209

    Article  CAS  Google Scholar 

  16. Kaksonen AH, Plumb JJ, Franzmann PD, Puhakka JA (2004) Simple organic electron donors support diverse sulfate-reducing communities in fluidized-bed reactors treating acidic metal-and sulfate-containing wastewater. Microbiol Ecol 47:279–289

    Article  CAS  Google Scholar 

  17. Poulson SR, Colberg PJS, Drever JI (1997) Toxicity of heavy metal (Ni, Zn) to Desulfovibrio desulfuricans. J Geomicrobiol 14:41–49

    Article  CAS  Google Scholar 

  18. Cabrera G, Pérez JM, Gómez A, Canterro D (2006) Toxic effects of dissolved heavy metals on Desulfovibrio vulgaris and Desulfovibrio sp. strains. J Hazard Mater A135:40–46

    Article  CAS  Google Scholar 

  19. Postgate JR (1984) The sulfate-reducing bacteria, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  20. Kieu TQH, Müller E, Horn H (2011) Heavy metal removal in anaerobic semi-continuous stirred tank reactors by a consortium of sulfate-reducing bacteria. Water Res 45(13):3863–3870

    Article  CAS  Google Scholar 

  21. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematic, John Wiley & Sons, Chichester, United Kingdom, pp 115–175

  22. Nielsen AT, Liu WT, Filipe C, Grady L, Molin S, Stahl DA (1999) Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor. Appl Environ Microbiol 65:1251–1258

    CAS  Google Scholar 

  23. Geets J, Borremans B, Diels L, Springael D, Vangronsveld J, Van der Lelie D, Vanbroekhoven K (2006) DsrB gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria. J Microbiol Methods 66:194–205

    Article  CAS  Google Scholar 

  24. Wagner M, Roger AJ, Flax JL, Brusseau GA, Stahl DA (1998) Phylogeny of dissimilatory sulfite reductase supports an early origin of sulfate respiration. J Bacteriol 180:2975–2982

    CAS  Google Scholar 

  25. Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresiss (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73:127–141

    Article  CAS  Google Scholar 

  26. Don RH, Wainwright BJ, Baker K, Mattick JS (1991) “Touchdown” PCR to circumvent spurious priming during gene amplification. Nucl Acids Res 19:4008

    Article  CAS  Google Scholar 

  27. Altschul SF, Madden TL, Schäfer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 27:3389–33402

    Article  Google Scholar 

  28. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussman R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenkej M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucl Acids Res 32:1363–1371

    Article  CAS  Google Scholar 

  29. Amann R, Stromley J, Devereux R, Key R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    CAS  Google Scholar 

  30. Daims H, Brühl A, Amann R, Schleifer KH, Wagner M (1999) The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444

    Article  CAS  Google Scholar 

  31. Wallner G, Amann R, Beisker W (1993) Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14:136–143

    Article  CAS  Google Scholar 

  32. Stahl DA and Amann R (1991) Development and application of nucleic acid probes. In: Stackebrandt EM, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. John Wiley & Sons, Chichester, United Kingdom, pp 205–248

  33. Deveruex RM, Kane D, Winfrey J, Stahl DA (1992) Genus-and group-specific hybridization probes for determinative and envioronmental studies of sulfate-reducing bacteria. Syst Appl Microbiol 15:601–609

    Article  Google Scholar 

  34. Manz W, Eisenbrecher M, Neu TR, Szewzyk U (1998) Abundance and spatial organization of Gram-negative sulfate-reducing bacteria in activated sludge investigated by in situ probing with specific 16S rRNA targeted oligonucleotides. FEMS Microbiol Ecol 25:43–61

    Article  CAS  Google Scholar 

  35. Brosius J, Dull TJ, Sleeter DD, Noller HF (1981) Gene organization and primary structure of a ribosomal RNA operon from E. coli. J Mol Biol 148:107–127

    Article  CAS  Google Scholar 

  36. Azabou S, Mechichi T, Sayadi S (2007) Zinc precipitation by heavy-metal tolerant sulfate-reducing bacteria enriched on phosphogypsum as a sulfate source. Mineral Eng 20:173–178

    Article  CAS  Google Scholar 

  37. Hao OJ, Huang L, Chen JM, Bugass RL (1994) Effects of metal additions on sulfate reduction activity in wastewater. Toxicol Environ Chem 46(4):197–212

    Article  CAS  Google Scholar 

  38. Utgikar VP, Chaudhary N, Koeniger A, Tabax HH, Heines JR, Govind R (2004) Toxicity of metals and metal mixtures analysis of concentration and time dependence for zinc and copper. Water Res 38:3651–3658

    Article  CAS  Google Scholar 

  39. Dar SA, Bijmans MF, Dinkla IJ, Geurkink B, Lens PN, Dopson M (2009) Population dynamics of a single-stage sulfidogenic bioreactor treating synthetic zinc-containing waste streams. Microbiol Ecol 58:529–537

    Article  Google Scholar 

  40. Pan J, Yu L (2011) Effects of Cd or/and Pb on soil enzyme activities and microbial community structure. Ecol Eng 37:1889–1894

    Article  Google Scholar 

  41. Michel C, Brugna M, Aubert C, Bernadac A, Bruschi M (2001) Enzymatic reduction of chromate: comparative studies using sulfate-reducing bacteria. Appl Microbiol Biotechnol 55:95–100

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support provided by Federal Ministry for Education and Research (BMBF/Germany) and Institute of Water Quality Control, Faculty of Civil Engineering and Geodesy, Technische Universität München, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kieu, H.T.Q., Horn, H. & Müller, E. The effect of heavy metals on microbial community structure of a sulfidogenic consortium in anaerobic semi-continuous stirred tank reactors. Bioprocess Biosyst Eng 37, 451–460 (2014). https://doi.org/10.1007/s00449-013-1012-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-1012-5

Keywords

Navigation