Skip to main content
Log in

Metabolic engineering of Escherichia coli for biosynthesis of d-galactonate

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

d-galactose is an attractive substrate for bioconversion. Herein, Escherichia coli was metabolically engineered to convert d-galactose into d-galactonate, a valuable compound in the polymer and cosmetic industries. d-galactonate productions by engineered E. coli strains were observed in shake flask cultivations containing 2 g L−1 d-galactose. Engineered E. coli expressing gld coding for galactose dehydrogenase from Pseudomonas syringae was able to produce 0.17 g L−1 d-galactonate. Inherent metabolic pathways for assimilating both d-galactose and d-galactonate were blocked to enhance the production of d-galactonate. This approach finally led to a 7.3-fold increase with d-galactonate concentration of 1.24 g L−1 and yield of 62.0 %. Batch fermentation in 20 g L−1 d-galactose of E. coli ∆galK∆dgoK mutant expressing the gld resulted in 17.6 g L−1 of d-galactonate accumulation and highest yield of 88.1 %. Metabolic engineering strategy developed in this study could be useful for industrial production of d-galactonate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kim GS, Shin MK, Kim YJ, Kim YJ, Oh KK, Kim JS, Ryu HJ, Kim KH (2010) Method of producing biofuel using sea algae. US patent. Pub No. US 2010/0124774 A1, 20 May 2010

  2. Kim NJ, Li H, Jung K, Chang HN, Lee PC (2011) Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresour Technol 102:7466–7469

    Article  CAS  Google Scholar 

  3. Mittal N, Nisola GM, Chung WJ (2012) Facile catalytic dehydration of fructose to 5-hydroxymethylfurfural by niobium pentachloride. Tetrahedron Lett 53:3149–3155

    Article  CAS  Google Scholar 

  4. Takagaki A, Nishimura S, Ebitani K (2012) Catalytic transformations of biomass-derived materials into value-added chemicals. Catal Surv Asia 16:164–182

    Article  CAS  Google Scholar 

  5. Romero Zaliz CL, Varela O (2006) Facile synthesis of a d-galactono-1,6-lactone derivative, a precursor of a copolyester. Carbohydr Res 341:2973–2977

    Article  CAS  Google Scholar 

  6. Yu RJ, Van Scott EJ (1997) Method of using galactonic acid or galactonolactone for treating wrinkles. US patent no. 5650436, 6 June 1995

  7. Kusema BT, Murzin DY (2013) Catalytic oxidation of rare sugars over gold catalysts. Catal Sci Technol 3:297–307

    Article  CAS  Google Scholar 

  8. Fiedler S, Buckel P (1990) The d-galactose dehydrogenase gene from Pseudomonas fluorescens: characterization of mutations leading to increased expression in Escherichia coli. Appl Microbiol Biotechnol 33:418–423

    Article  CAS  Google Scholar 

  9. Holden HM, Rayment I, Thoden JB (2003) Structure and function of enzymes of the Leloir pathway for galactose metabolism. J Biol Chem 278:43885–43888

    Article  CAS  Google Scholar 

  10. Cooper RA (1978) The utilization of d-galactonate and d-2-oxo-3-deoxygalactonate by Escherichia coli K-12. Arch Micrbiol 118:199–206

    Article  CAS  Google Scholar 

  11. Wong TY, Yao X-T (1994) The DeLey-Doudoroff pathway of galactose metabolism in Azotobacter vinelandii. Appl Environ Microbiol 60:2065–2068

    CAS  Google Scholar 

  12. Kurn N, Contreras I, Shapiro L (1978) Galactose catabolism in Caulobacter crescentus. J Bacteriol 135:517–520

    CAS  Google Scholar 

  13. Maier E, Kurz G (1982) d-Galactose dehydrogenase from Pseudomonas fluorescens. Methods Enzymol 89:176–181

    Article  CAS  Google Scholar 

  14. Yu C, Cao Y, Zou H, Xian M (2010) Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols. Appl Microbiol Biotechnol 89:573–583

    Article  CAS  Google Scholar 

  15. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2(2006):0008

    Google Scholar 

  16. Nanobio: Protocol for gene knockout (2009) http://openwetware.org/index.php?title=NanoBio:Protocol_for_gene_knockout&oldid=339609. Accessed 7 June 2010

  17. Berghäll S, Hilditch S, Penttilä M, Richard P (2007) Identification in the mould Hypocrea jecorina of a gene encoding an NADP(+): d-xylose dehydrogenase. FEMS Microbiol Lett 277:249–253

    Article  CAS  Google Scholar 

  18. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  19. Lien OG (1959) Determination of gluconolactone, galactonolactone, and their free acids by hydroxamate method. Anal Chem 31:1363–1366

    Article  CAS  Google Scholar 

  20. Liu H, Valdehuesa KN, Nisola GM, Ramos KR, Chung WJ (2012) High yield production of d-xylonic acid from d-xylose using engineered Escherichia coli. Bioresour Technol 115:244–248

    Article  CAS  Google Scholar 

  21. Buchert J, Viikari L, Linko M, Markkanen P (1986) Production of xylonic acid by Pseudomonas fragi. Biotechnol Lett 8:541–546

    Article  CAS  Google Scholar 

  22. Pao SS, Paulsen IT, Saier MH Jr (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62:1–34

    CAS  Google Scholar 

  23. Puigbò P, Guzmán E, Romeu A, Garcia-Vallvé S (2007) OPTIMIZER: a web server for optimizing the codon usage of DNA sequences. Nucleic Acids Res 35:W126–W131

    Article  Google Scholar 

  24. Zeng AP, Sabra W (2011) Microbial production of diols as platform chemicals: recent progresses. Curr Opin Biotechnol 22:749–757

    Article  CAS  Google Scholar 

  25. Kuivanen J, Mojzita D, Wang Y, Hilditch S, Penttilä M, Richard P, Wiebe MG (2012) Engineering filamentous fungi for conversion of d-galacturonic acid to l-galactonic acid. Appl Environ Microbiol 78:8676–8683

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012-0006693).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wook-Jin Chung.

Additional information

H. Liu, K. R. M. Ramos and K. N. G. Valdehuesa equally contributed to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 252 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Ramos, K.R.M., Valdehuesa, K.N.G. et al. Metabolic engineering of Escherichia coli for biosynthesis of d-galactonate. Bioprocess Biosyst Eng 37, 383–391 (2014). https://doi.org/10.1007/s00449-013-1003-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-1003-6

Keywords

Navigation