Skip to main content

Production of biomass and filamentous hemagglutinin by Bordetella bronchiseptica

Abstract

The mammalian pathogen Bordetella bronchiseptica was grown under controlled batch conditions with glutamate as the primary carbon and nitrogen source. First, a Box-Behnken statistical design quantified the effect of Mg, sulfate, and nicotinate on the antigen filamentous hemagglutinin (FHA) formation. Using lactic acid as a secondary carbon source for pH control, Mg, and SO4 each negatively affected antigen expression, while nicotinate positively affected antigen expression. Sulfate had a stronger negative effect than Mg with 10 mM eliminating FHA altogether; the highest FHA expression (about 1,000 ng/mL) occurred when either Mg concentration or SO4 concentration, but not both, was about 0.1 mM. Using two Mg and SO4 compositions modeled to yield the greatest antigen expression, three other organic acids were compared as the secondary carbon source: acetate, citrate, and succinate. Mixtures of acetate and glutamate resulted in the greatest organic acid consumption, OD, and FHA concentration (about 1,500 ng/mL), although significant acetate accumulated during these batch processes. The mechanism leading to elevated FHA expression when acetate is the secondary carbon source is unknown, particularly since these cultures were most prone to phase shift to Bvg cultures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

AG:

Cultivations which contained acetate and glutamate as the carbon sources

Bvg:

Bordetella virulence gene regulon

CDM:

Chemically defined medium

CG:

Cultivations which contained citrate and glutamate as the carbon sources

DO:

Dissolved oxygen concentration as a percent of saturation

FHA:

Adhesin filamentous hemagglutinin

L, M, H:

Low, medium, and high concentrations of medium components studied

LG:

Cultivations which contained lactate and glutamate as the carbon sources

OD:

Optical density, a measurement of cell density and growth

SG:

Cultivations which contained succinate and glutamate as the carbon sources

References

  1. Parkhill J, Sebaihia M, Preston A, Murphy LD, Thomson N, Harris DE, Holden MT, Churcher CM, Bentley SD, Mungall KL, Cerdeno-Tarraga AM, Temple L, James K, Harris B, Quail MA, Achtman M, Atkin R, Baker S, Basham J, Bason D, Cherevach N, Chillingworth I, Collins T, Cronin M, Davis A, Doggett P, Feltwell T, Goble A, Hamlin N, Hauser H, Holroyd S, Jagels K, Leather S, Moule S, Norberczak H, O’Neil S, Ormond D, Price C, Rabbinowitsch E, Rutter S, Sanders M, Saunders D, Seeger K, Sharp S, Simmonds M, Skelton J, Squares R, Squares S, Stevens K, Unwin L, Whitehead S, Barrell BG, Maskell DJ (2003) Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet 35:32–40

    Article  Google Scholar 

  2. Armstrong SK, Gross R (2007) In: Locht C (ed) Bordetella: molecular microbiology. Horizon Bioscience, Wymondham, pp 165–190

    Google Scholar 

  3. Goodnow RA (1980) Biology of Bordetella bronchiseptica. Microbiol Rev 44:722–738

    CAS  Google Scholar 

  4. Carbone M, Fera MT, Pennisi MG, Masucci M, De Sarro A, Macri C (1999) Activity of nine fluoroquinolones against strains of Bordetella bronchiseptica. Intl J Antimicrob Agents 12:355–358

    Article  CAS  Google Scholar 

  5. Lacey BW (1960) Antigenic modulation of Bordetella pertussis. J Hyg 58:57–93

    Article  CAS  Google Scholar 

  6. Stibitz S (2007) In: Locht C (ed) Bordetella: molecular microbiology. Horizon Bioscience, Wymondham, pp 47–68

    Google Scholar 

  7. Cotter PA, Miller JF (1997) A mutation in the Bordetella bronchiseptica bvgS gene results in reduced virulence and increased resistance to starvation, and identifies a new class of bvg-regulated antigens. Mol Microbiol 24:671–685

    Article  CAS  Google Scholar 

  8. Cotter PA, Miller JF (1994) BvgAS-mediated signal transduction: analysis of phase locked regulatory mutants of Bordetella bronchiseptica in a rabbit model. Infect Immun 62:3381–3390

    CAS  Google Scholar 

  9. Stockbauer KE, Fuchslocher B, Miller JF, Cotter PA (2001) Identification and characterization of BipA, a Bordetella Bvg-intermediate phase protein. Mol Microbiol 39:65–78

    Article  CAS  Google Scholar 

  10. Yuk MH, Harvill ET, Miller JF (1998) The bvgAS virulence control system regulates type III secretion in Bordetella bronchiseptica. Mol Microbiol 28:945–959

    Article  CAS  Google Scholar 

  11. Cotter PA, Miller JF (2000) Genetic analysis of the Bordetella infectious cycle. Immunopharmacol 48:253–255

    Article  CAS  Google Scholar 

  12. Preston A, Maxim E, Toland E, Pishko EJ, Harvill ET, Caroff M, Maskell DJ (2003) Bordetella bronchiseptica PagP is a Bvg-regulated lipid A palmitoyl transferase that is required for persistent colonization of the mouse respiratory tract. Mol Microbiol 48:725–736

    Article  CAS  Google Scholar 

  13. Akerley BJ, Monack DM, Falkow S, Miller JF (1992) The bvgAS locus negatively controls motility and the synthesis of flagella in Bordetella bronchiseptica. J Bacteriol 174:980–990

    CAS  Google Scholar 

  14. Akerley BJ, Miller JF (1993) Flagellin gene transcription in Bordetella bronchiseptica is regulated by the BvgAS virulence control system. J Bacteriol 175:3468–3479

    CAS  Google Scholar 

  15. Mishra M, Deora R (2005) Mode of action of the Bordetella BvgA protein: transcriptional activation and repression of the Bordetella bronchiseptica bipA promoter. J Bacteriol 187:6290–6299

    Article  CAS  Google Scholar 

  16. Smith AM, Guzmán CA, Walker MJ (2001) The virulence factors of Bordetella pertussis: a matter of control. FEMS Microbiol Rev 25:309–333

    Article  CAS  Google Scholar 

  17. Jacob-Dubuisson F, Locht C (2007) In: Locht C (ed) Bordetella: molecular microbiology. Horizon Bioscience, Wymondham, pp 69–96

    Google Scholar 

  18. Cotter PA, Yuk MH, Mattoo S, Akerley BJ, Boschwitz J, Relman DA, Miller JF (1998) Filamentous hemagglutinin of Bordetella bronchiseptica is required for efficient establishment of tracheal colonization. Infect Immun 66:5921–5929

    CAS  Google Scholar 

  19. Plotkin BJ, Bemis DA (1998) Carbon source utilisation by Bordetella bronchiseptica. J Med Microbiol 47:761–765

    Article  CAS  Google Scholar 

  20. Thalen M, van den Ijssel J, Jiskoot W, Zomer B, Roholl P, de Gooijer C, Beuvery C, Tramper J (1999) Rational medium design for Bordetella pertussis: basic metabolism. J Biotechnol 75:147–159

    Article  CAS  Google Scholar 

  21. Frohlich BT, De Bernardez Clark ER, Siber GR, Swartz RW (1995) Improved pertussis toxin production by Bordetella pertussis through adjusting the growth medium’s ionic composition. J Biotechnol 39:205–219

    Article  CAS  Google Scholar 

  22. Fuchs G (1999) In: Lengeler JW, Drews G, Schlegel HG (eds) Biology of Prokaryotes. Blackwell Science, New York, pp 110–162

    Google Scholar 

  23. Neidhardt FC, Ingraham JL, Schaechter M (1990) Physiology of the Bacterial Cell. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  24. Stainer DW, Scholte MJ (1971) A simple chemically defined medium for the production of phase I Bordetella pertussis. J Gen Microbiol 63:211–220

    Article  Google Scholar 

  25. Jebb WHH, Tomlinson AH (1955) The nutritional requirements of Haemophilus pertussis. J Gen Microbiol 13:1–8

    Article  CAS  Google Scholar 

  26. Fuchs G, Kröger A (1999) In: Lengeler JW, Drews G, Schlegel HG (eds) Biology of prokaryotes. Blackwell Science, New York, pp 88–109

    Google Scholar 

  27. Thalen M, Venema M, van den Ijssel J, Berwald L, Beuvery C, Martens D, Tramper J (2006) Effect of relevant culture parameters on pertussis toxin expression by Bordetella pertussis. Biologicals 34:213–220

    Article  CAS  Google Scholar 

  28. Salyers AA, Whitt DD (2002) Bacterial pathogenesis: a molecular approach. ASM Press, Washington

    Google Scholar 

  29. Imaizumi A, Suzuki Y, Ono S, Sato H, Sato Y (1983) Effect of heptakis(2,6-O-dimethyl)β-cyclodextrin on the production of pertussis toxin by Bordetella pertussis. Infect Immun 41:1138–1143

    CAS  Google Scholar 

  30. Eiteman MA, Chastain MJ (1997) Optimization of the ion-exchange analysis of organic acids from fermentation. Anal Chim Acta 338:69–75

    Article  CAS  Google Scholar 

  31. Licari P, Siber GR, Swartz R (1991) Production of cell mass and pertussis toxin by Bordetella pertussis. J Biotechnol 20:117–130

    Article  CAS  Google Scholar 

  32. van de Waterbeemd B, Streefland M, Pennings J, van der Pol L, Beuvery C, Tramper J, Martens D (2009) Gene-expression-based quality scores indicate optimal harvest point in Bordetella pertussis cultivation for vaccine production. Biotechnol Bioeng 103:900–908

    Article  Google Scholar 

  33. Nakamura MM, Liew SY, Cummings CA, Brinig MM, Dieterich C, Relman DA (2006) Growth phase- and nutrient limitation-associated transcript abundance regulation in Bordetella pertussis. Infect Immun 74:5537–5548

    Article  CAS  Google Scholar 

  34. Peppler MS, Judd RC, Munoz JJ (1985) Effect of proteolytic enzymes, storage and reduction on the structure and biological activity of pertussis igen, a toxin from Bordetella pertussis. Dev Biol Stand 61:75–87

    CAS  Google Scholar 

  35. Thalen M, Venema M, Dekker A, Berwald L, van den Ijssel J, Zomer B, Beuvery C, Martens D, Tramper J (2006) Fed-batch cultivation of Bordetella pertussis: metabolism and pertussis toxin production. Biologicals 34:289–297

    Article  CAS  Google Scholar 

  36. Ezzel JW, Dobrogosz WJ, Kloos WE, Manclark CR (1981) Phase-shift markers in the genus Bordetella: loss of cytochrome d-629 in phase IV variants. Microbios 31:171–181

    Google Scholar 

  37. Bock A, Gross R (2002) The unorthodox histidine BvgS and EvgS are responsive to the oxidation status of a quinone electron carrier. Eur J Biochem 269:3479–3484

    Article  CAS  Google Scholar 

  38. Beier D, Deppisch H, Gross R (1996) Conserved sequence motifs in the unorthodox BvgS two-component sensor protein of Bordetella pertussis. Mol Gen Genet 252:169–176

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Sarah Lee for analytical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Eiteman.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Guetter, S.D., Eiteman, M.A. Production of biomass and filamentous hemagglutinin by Bordetella bronchiseptica . Bioprocess Biosyst Eng 37, 115–123 (2014). https://doi.org/10.1007/s00449-013-0977-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-0977-4

Keywords