Bioprocess and Biosystems Engineering

, Volume 37, Issue 2, pp 115–123 | Cite as

Production of biomass and filamentous hemagglutinin by Bordetella bronchiseptica

Original Paper
  • 303 Downloads

Abstract

The mammalian pathogen Bordetella bronchiseptica was grown under controlled batch conditions with glutamate as the primary carbon and nitrogen source. First, a Box-Behnken statistical design quantified the effect of Mg, sulfate, and nicotinate on the antigen filamentous hemagglutinin (FHA) formation. Using lactic acid as a secondary carbon source for pH control, Mg, and SO4 each negatively affected antigen expression, while nicotinate positively affected antigen expression. Sulfate had a stronger negative effect than Mg with 10 mM eliminating FHA altogether; the highest FHA expression (about 1,000 ng/mL) occurred when either Mg concentration or SO4 concentration, but not both, was about 0.1 mM. Using two Mg and SO4 compositions modeled to yield the greatest antigen expression, three other organic acids were compared as the secondary carbon source: acetate, citrate, and succinate. Mixtures of acetate and glutamate resulted in the greatest organic acid consumption, OD, and FHA concentration (about 1,500 ng/mL), although significant acetate accumulated during these batch processes. The mechanism leading to elevated FHA expression when acetate is the secondary carbon source is unknown, particularly since these cultures were most prone to phase shift to Bvg cultures.

Keywords

Hemagglutinin Kennel cough Box-Behnken statistical design Glutamate Lactate Acetate Virulence factors 

Abbreviations

AG

Cultivations which contained acetate and glutamate as the carbon sources

Bvg

Bordetella virulence gene regulon

CDM

Chemically defined medium

CG

Cultivations which contained citrate and glutamate as the carbon sources

DO

Dissolved oxygen concentration as a percent of saturation

FHA

Adhesin filamentous hemagglutinin

L, M, H

Low, medium, and high concentrations of medium components studied

LG

Cultivations which contained lactate and glutamate as the carbon sources

OD

Optical density, a measurement of cell density and growth

SG

Cultivations which contained succinate and glutamate as the carbon sources

References

  1. 1.
    Parkhill J, Sebaihia M, Preston A, Murphy LD, Thomson N, Harris DE, Holden MT, Churcher CM, Bentley SD, Mungall KL, Cerdeno-Tarraga AM, Temple L, James K, Harris B, Quail MA, Achtman M, Atkin R, Baker S, Basham J, Bason D, Cherevach N, Chillingworth I, Collins T, Cronin M, Davis A, Doggett P, Feltwell T, Goble A, Hamlin N, Hauser H, Holroyd S, Jagels K, Leather S, Moule S, Norberczak H, O’Neil S, Ormond D, Price C, Rabbinowitsch E, Rutter S, Sanders M, Saunders D, Seeger K, Sharp S, Simmonds M, Skelton J, Squares R, Squares S, Stevens K, Unwin L, Whitehead S, Barrell BG, Maskell DJ (2003) Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet 35:32–40CrossRefGoogle Scholar
  2. 2.
    Armstrong SK, Gross R (2007) In: Locht C (ed) Bordetella: molecular microbiology. Horizon Bioscience, Wymondham, pp 165–190Google Scholar
  3. 3.
    Goodnow RA (1980) Biology of Bordetella bronchiseptica. Microbiol Rev 44:722–738Google Scholar
  4. 4.
    Carbone M, Fera MT, Pennisi MG, Masucci M, De Sarro A, Macri C (1999) Activity of nine fluoroquinolones against strains of Bordetella bronchiseptica. Intl J Antimicrob Agents 12:355–358CrossRefGoogle Scholar
  5. 5.
    Lacey BW (1960) Antigenic modulation of Bordetella pertussis. J Hyg 58:57–93CrossRefGoogle Scholar
  6. 6.
    Stibitz S (2007) In: Locht C (ed) Bordetella: molecular microbiology. Horizon Bioscience, Wymondham, pp 47–68Google Scholar
  7. 7.
    Cotter PA, Miller JF (1997) A mutation in the Bordetella bronchiseptica bvgS gene results in reduced virulence and increased resistance to starvation, and identifies a new class of bvg-regulated antigens. Mol Microbiol 24:671–685CrossRefGoogle Scholar
  8. 8.
    Cotter PA, Miller JF (1994) BvgAS-mediated signal transduction: analysis of phase locked regulatory mutants of Bordetella bronchiseptica in a rabbit model. Infect Immun 62:3381–3390Google Scholar
  9. 9.
    Stockbauer KE, Fuchslocher B, Miller JF, Cotter PA (2001) Identification and characterization of BipA, a Bordetella Bvg-intermediate phase protein. Mol Microbiol 39:65–78CrossRefGoogle Scholar
  10. 10.
    Yuk MH, Harvill ET, Miller JF (1998) The bvgAS virulence control system regulates type III secretion in Bordetella bronchiseptica. Mol Microbiol 28:945–959CrossRefGoogle Scholar
  11. 11.
    Cotter PA, Miller JF (2000) Genetic analysis of the Bordetella infectious cycle. Immunopharmacol 48:253–255CrossRefGoogle Scholar
  12. 12.
    Preston A, Maxim E, Toland E, Pishko EJ, Harvill ET, Caroff M, Maskell DJ (2003) Bordetella bronchiseptica PagP is a Bvg-regulated lipid A palmitoyl transferase that is required for persistent colonization of the mouse respiratory tract. Mol Microbiol 48:725–736CrossRefGoogle Scholar
  13. 13.
    Akerley BJ, Monack DM, Falkow S, Miller JF (1992) The bvgAS locus negatively controls motility and the synthesis of flagella in Bordetella bronchiseptica. J Bacteriol 174:980–990Google Scholar
  14. 14.
    Akerley BJ, Miller JF (1993) Flagellin gene transcription in Bordetella bronchiseptica is regulated by the BvgAS virulence control system. J Bacteriol 175:3468–3479Google Scholar
  15. 15.
    Mishra M, Deora R (2005) Mode of action of the Bordetella BvgA protein: transcriptional activation and repression of the Bordetella bronchiseptica bipA promoter. J Bacteriol 187:6290–6299CrossRefGoogle Scholar
  16. 16.
    Smith AM, Guzmán CA, Walker MJ (2001) The virulence factors of Bordetella pertussis: a matter of control. FEMS Microbiol Rev 25:309–333CrossRefGoogle Scholar
  17. 17.
    Jacob-Dubuisson F, Locht C (2007) In: Locht C (ed) Bordetella: molecular microbiology. Horizon Bioscience, Wymondham, pp 69–96Google Scholar
  18. 18.
    Cotter PA, Yuk MH, Mattoo S, Akerley BJ, Boschwitz J, Relman DA, Miller JF (1998) Filamentous hemagglutinin of Bordetella bronchiseptica is required for efficient establishment of tracheal colonization. Infect Immun 66:5921–5929Google Scholar
  19. 19.
    Plotkin BJ, Bemis DA (1998) Carbon source utilisation by Bordetella bronchiseptica. J Med Microbiol 47:761–765CrossRefGoogle Scholar
  20. 20.
    Thalen M, van den Ijssel J, Jiskoot W, Zomer B, Roholl P, de Gooijer C, Beuvery C, Tramper J (1999) Rational medium design for Bordetella pertussis: basic metabolism. J Biotechnol 75:147–159CrossRefGoogle Scholar
  21. 21.
    Frohlich BT, De Bernardez Clark ER, Siber GR, Swartz RW (1995) Improved pertussis toxin production by Bordetella pertussis through adjusting the growth medium’s ionic composition. J Biotechnol 39:205–219CrossRefGoogle Scholar
  22. 22.
    Fuchs G (1999) In: Lengeler JW, Drews G, Schlegel HG (eds) Biology of Prokaryotes. Blackwell Science, New York, pp 110–162Google Scholar
  23. 23.
    Neidhardt FC, Ingraham JL, Schaechter M (1990) Physiology of the Bacterial Cell. Sinauer Associates, Inc., SunderlandGoogle Scholar
  24. 24.
    Stainer DW, Scholte MJ (1971) A simple chemically defined medium for the production of phase I Bordetella pertussis. J Gen Microbiol 63:211–220CrossRefGoogle Scholar
  25. 25.
    Jebb WHH, Tomlinson AH (1955) The nutritional requirements of Haemophilus pertussis. J Gen Microbiol 13:1–8CrossRefGoogle Scholar
  26. 26.
    Fuchs G, Kröger A (1999) In: Lengeler JW, Drews G, Schlegel HG (eds) Biology of prokaryotes. Blackwell Science, New York, pp 88–109Google Scholar
  27. 27.
    Thalen M, Venema M, van den Ijssel J, Berwald L, Beuvery C, Martens D, Tramper J (2006) Effect of relevant culture parameters on pertussis toxin expression by Bordetella pertussis. Biologicals 34:213–220CrossRefGoogle Scholar
  28. 28.
    Salyers AA, Whitt DD (2002) Bacterial pathogenesis: a molecular approach. ASM Press, WashingtonGoogle Scholar
  29. 29.
    Imaizumi A, Suzuki Y, Ono S, Sato H, Sato Y (1983) Effect of heptakis(2,6-O-dimethyl)β-cyclodextrin on the production of pertussis toxin by Bordetella pertussis. Infect Immun 41:1138–1143Google Scholar
  30. 30.
    Eiteman MA, Chastain MJ (1997) Optimization of the ion-exchange analysis of organic acids from fermentation. Anal Chim Acta 338:69–75CrossRefGoogle Scholar
  31. 31.
    Licari P, Siber GR, Swartz R (1991) Production of cell mass and pertussis toxin by Bordetella pertussis. J Biotechnol 20:117–130CrossRefGoogle Scholar
  32. 32.
    van de Waterbeemd B, Streefland M, Pennings J, van der Pol L, Beuvery C, Tramper J, Martens D (2009) Gene-expression-based quality scores indicate optimal harvest point in Bordetella pertussis cultivation for vaccine production. Biotechnol Bioeng 103:900–908CrossRefGoogle Scholar
  33. 33.
    Nakamura MM, Liew SY, Cummings CA, Brinig MM, Dieterich C, Relman DA (2006) Growth phase- and nutrient limitation-associated transcript abundance regulation in Bordetella pertussis. Infect Immun 74:5537–5548CrossRefGoogle Scholar
  34. 34.
    Peppler MS, Judd RC, Munoz JJ (1985) Effect of proteolytic enzymes, storage and reduction on the structure and biological activity of pertussis igen, a toxin from Bordetella pertussis. Dev Biol Stand 61:75–87Google Scholar
  35. 35.
    Thalen M, Venema M, Dekker A, Berwald L, van den Ijssel J, Zomer B, Beuvery C, Martens D, Tramper J (2006) Fed-batch cultivation of Bordetella pertussis: metabolism and pertussis toxin production. Biologicals 34:289–297CrossRefGoogle Scholar
  36. 36.
    Ezzel JW, Dobrogosz WJ, Kloos WE, Manclark CR (1981) Phase-shift markers in the genus Bordetella: loss of cytochrome d-629 in phase IV variants. Microbios 31:171–181Google Scholar
  37. 37.
    Bock A, Gross R (2002) The unorthodox histidine BvgS and EvgS are responsive to the oxidation status of a quinone electron carrier. Eur J Biochem 269:3479–3484CrossRefGoogle Scholar
  38. 38.
    Beier D, Deppisch H, Gross R (1996) Conserved sequence motifs in the unorthodox BvgS two-component sensor protein of Bordetella pertussis. Mol Gen Genet 252:169–176CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Merial LimitedAthensUSA
  2. 2.Biochemical Engineering, College of EngineeringUniversity of GeorgiaAthensUSA

Personalised recommendations