Skip to main content

Advertisement

Log in

High-level extracellular production of d-Psicose-3-epimerase with recombinant Escherichia coli by a two-stage glycerol feeding approach

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The aim of this study is to achieve high-level extracellular production of d-Psicose-3-epimerase (DPE) with recombinant Escherichia coli. High-level production of DPE is one of the key factors in d-Psicose production. In the present study, the gene AAL45544.1 from Agrobacterium tumefaciens str. C58 was modified by artificial synthesis for overexpression in E. coli. The total DPE activity reached 3.96 U mL−1 after optimization of the media composition, induction temperature, and concentration of inducer. Furthermore, it was found that addition of glycine had a positive effect on the extracellular production of DPE, which reached 3.5 U mL−1. Finally, a two-stage glycerol feeding strategy based on both the specific growth rate before induction and the amount of glycerol residues after induction was applied in a 3-L fermenter. After a series of optimal strategies in the 3-L fermenter, the total and extracellular DPE activity were 5.08- and 3.11-fold higher than that noted in the shake flask. The extracellular and intracellular DPE activity reached 10.9 and 13.2 U mL−1, achieving 25.5 and 31.1 % conversion of d-fructose to d-psicose, respectively. The systemic strategies presented in this study provide valuable novel information for the industrial application of DPE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Matsuo T, Izumori K (2004) d-Psicose, a rare sugar that provides no energy and additionally beneficial effects for clinical nutrition. Asia Pac J Clin Nutr 13(Suppl):127

    Google Scholar 

  2. Hossain MA, Izuishi K, Tokuda M, Izumori K, Maeta H (2004) d-Allose has a strong suppressive effect against ischemia/reperfusion injury: a comparative study with allopurinol and superoxide dismutase. J Hepato Bill Pan Sci 11(3):181–189

    Google Scholar 

  3. Murata A, Sekiya K, Watanabe Y, Yamaguchi F, Hatano N, Izumori K, Tokuda M (2003) A novel inhibitory effect of d-Allose on production of reactive oxygen species from neutrophils. J Biosci Bioeng 96(1):89–91

    CAS  Google Scholar 

  4. Levin GV (2002) Tagatose, the new GRAS sweetener and health product. J Med Food 5(1):23–36

    Article  CAS  Google Scholar 

  5. Matsuo T, Baba Y, Hashiguchi M, Takeshita K, Izumori K, Suzuki H (2001) Dietary d-Psicose, a C-3 epimer of d-Fructose, suppresses the activity of hepatic lipogenic enzymes in rats. Asia Pac J Clin Nutr 10(3):233–237

    Article  CAS  Google Scholar 

  6. Hossain M (2000) Effect of the immunosuppressants FK506 and d-Allose on allogenic orthotopic liver transplantation in rats. Transpl Proc 32:2021–2023

    Article  CAS  Google Scholar 

  7. Muniruzzaman S, Pan Y, Zeng Y, Atkins B, Izumori K, Elbein A (1996) Inhibition of glycoprotein processing by l-fructose and l-xylulose. Glycobiology 6(8):795–803

    Article  CAS  Google Scholar 

  8. Granström TB, Takata G, Tokuda M, Izumori K (2004) Izumoring: a novel and complete strategy for bioproduction of rare sugars. J Biosci Bioeng 97(2):89–94

    Google Scholar 

  9. Matsuo T, Tanaka T, Hashiguchi M, Izumori K, Suzuki H (2003) Metabolic effects of d-Psicose in rats: studies on faecal and urinary excretion and caecal fermentation. Asia Pac J Clin Nutr 12(2):225–231

    CAS  Google Scholar 

  10. Matsuo T, Suzuki H, Hashiguchi M, Izumori K (2002) d-Psicose is a rare sugar that provides no energy to growing rats. J Nutr Sci Vitaminol 48(1):77

    Article  CAS  Google Scholar 

  11. Mu W, Zhang W, Feng Y, Jiang B, Zhou L (2012) Recent advances on applications and biotechnological production of d-Psicose. Appl Microbiol Biotechnol 94(6):1461–1467

    Article  CAS  Google Scholar 

  12. Itoh H, Okaya H, Khan AR, Tajima S, Hayakawa S, Izumori K (1994) Purification and characterization of d-Tagatose 3-epimerase from Pseudomonas sp. ST-24. Biosci Biotechnol Biochem 58(12):2168–2171

    Article  CAS  Google Scholar 

  13. Zhang L, Mu W, Jiang B, Zhang T (2009) Characterization of d-Tagatose-3-epimerase from Rhodobacter sphaeroides that converts d-Fructose into d-Psicose. Biotechnol Lett 31(6):857–862. doi:10.1007/s10529-009-9942-3

    Article  CAS  Google Scholar 

  14. Mu W, Chu F, Xing Q, Yu S, Zhou L, Jiang B (2011) Cloning, expression, and characterization of a d-Psicose 3-epimerase from Clostridium cellulolyticum H10. J Agric Food Chem 59(14):7785–7792

    Article  CAS  Google Scholar 

  15. Kim HJ, Hyun EK, Kim YS, Lee YJ, Oh DK (2006) Characterization of an Agrobacterium tumefaciens d-Psicose 3-epimerase that converts d-Fructose to d-Psicose. Appl Environ Microbiol 72(2):981–985. doi:10.1128/aem.72.2.981-985.2006

    Article  CAS  Google Scholar 

  16. Goodner B, Hinkle G, Gattung S, Miller N, Blanchard M, Qurollo B, Goldman BS, Cao Y, Askenazi M, Halling C (2001) Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294(5550):2323–2328

    Article  CAS  Google Scholar 

  17. Kim K, Kim H-J, Oh D-K, Cha S–S, Rhee S (2006) Crystal structure of d-Psicose 3-epimerase from Agrobacterium tumefaciens and its complex with true substrate d-Fructose: a pivotal role of metal in catalysis, an active site for the non-phosphorylated substrate, and its conformational changes. J Mol Biol 361(5):920–931. doi:10.1016/j.jmb.2006.06.069

    Article  CAS  Google Scholar 

  18. Kelley R, Reddy CA (1986) Purification and characterization of glucose oxidase from ligninolytic cultures of Phanerochaete chrysosporium. J Bacteriol 166(1):269–274

    CAS  Google Scholar 

  19. Fu W, Lin J, Cen P (2010) Expression of a hemA gene from Agrobacterium radiobacter in a rare codon optimizing Escherichia coli for improving 5-aminolevulinate production. Appl Biochem Biotech 160(2):456–466

    Article  CAS  Google Scholar 

  20. Pinsach J, de Mas C, López-Santín J (2008) Induction strategies in fed-batch cultures for recombinant protein production in Escherichia coli: application to rhamnulose 1-phosphate aldolase. Biochem Eng J 41(2):181–187

    Article  CAS  Google Scholar 

  21. Martínez-Martínez I, Kaiser C, Rohde A, Ellert A, García-Carmona F, Sánchez-Ferrer Á, Luttmann R (2007) High-level production of Bacillus subtilis glycine oxidase by fed-batch cultivation of recombinant Escherichia coli Rosetta (DE3). Biotechnol Prog 23(3):645–651

    Article  Google Scholar 

  22. Matsumoto T, Katsura D, Kondo A, Fukuda H (2002) Efficient secretory overexpression of Bacillus subtilis pectate lyase in Escherichia coli and single-step purification. Biochem Eng J 12(3):175–179

    Article  CAS  Google Scholar 

  23. Tang J, Yang H, Song S, Zhu P, Ji A (2008) Effect of glycine and Triton X-100 on secretion and expression of ZZ-EGFP fusion protein. Food Chem 108(2):657–662

    Article  CAS  Google Scholar 

  24. Rhee JI, Bode J, Diaz-Ricci JC, Poock D, Weigel B, Kretzmer G, Schügerl K (1997) Influence of the medium composition and plasmid combination on the growth of recombinant Escherichia coli JM109 and on the production of the fusion protein EcoRI: SPA. J Biotechnol 55(2):69–83

    Article  CAS  Google Scholar 

  25. Kaderbhai N, Karim A, Hankey W, Jenkins G, Venning J, Kaderbhai MA (1997) Glycine-induced extracellular secretion of a recombinant cytochrome expressed in Escherichia coli. Biotechnol Appl Biochem 25(1):53–61

    Article  CAS  Google Scholar 

  26. Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22(4):249–270

    Article  CAS  Google Scholar 

  27. Pei X, Wang Q, Qiu X, Ying L, Tao J, Xie T (2010) The fed-batch production of a thermophilic 2-deoxyribose-5-phosphate aldolase (DERA) in Escherichia coli by exponential feeding strategy control. Appl Biochem Biotech 162(5):1423–1434

    Article  CAS  Google Scholar 

  28. Norsyahida A, Rahmah N, Ahmad R (2009) Effects of feeding and induction strategy on the production of BmR1 antigen in recombinant E. coli. Lett Appl Microbiol 49(5):544–550

    Article  CAS  Google Scholar 

  29. Shiloach J, Fass R (2005) Growing E. coli to high cell density—a historical perspective on method development. Biotechnol Adv 23(5):345–357

    Article  CAS  Google Scholar 

  30. Eiteman MA, Altman E (2006) Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol 24(11):530–536

    Article  CAS  Google Scholar 

  31. Ramalingam S, Gautam P, Mukherjee KJ, Jayaraman G (2007) Effects of post-induction feed strategies on secretory production of recombinant streptokinase in Escherichia coli. Biochem Eng J 33(1):34–41

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was financially supported by the National High Technology Research and Development Program of China (863 Program, 2011AA100905), the National Natural Science Foundation of China (No. 30900013), the National Key Technology R&D Program in the 12th Five year Plan of China (2011BAK10B03), and the National High Technology Research and Development Program of China (863 Program, 2011AA100901).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Zhang or Jian Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, L., Zhang, J., Liu, B. et al. High-level extracellular production of d-Psicose-3-epimerase with recombinant Escherichia coli by a two-stage glycerol feeding approach. Bioprocess Biosyst Eng 36, 1767–1777 (2013). https://doi.org/10.1007/s00449-013-0952-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-0952-0

Keywords

Navigation