Skip to main content
Log in

An in silico erythropoiesis model rationalizing synergism between stem cell factor and erythropoietin

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Stem cell factor (SCF) and erythropoietin (EPO) are two most recognized growth factors that play in concert to control in vitro erythropoiesis. However, exact mechanisms underlying the interplay of these growth factors in vitro remain unclear. We developed a mathematical model to study co-signaling effects of SCF and EPO utilizing the ERK1/2 and GATA-1 pathways (activated by SCF and EPO) that drive the proliferation and differentiation of erythroid progenitors. The model was simplified and formulated based on three key features: synergistic contribution of SCF and EPO on ERK1/2 activation, positive feedback effects on proliferation and differentiation, and cross-inhibition effects of activated ERK1/2 and GATA-1. The model characteristics were developed to correspond with biological observations made known thus far. Our simulation suggested that activated GATA-1 has a more dominant cross-inhibition effect and stronger positive feedback response on differentiation than the proliferation pathway, while SCF contributed more to the activation of ERK1/2 than EPO. A sensitivity analysis performed to gauge the dynamics of the system was able to identify the most sensitive model parameters and illustrated a contribution of transient activity in EPO ligand to growth factor synergism. Based on theoretical arguments, we have successfully developed a model that can simulate growth factor synergism observed in vitro for erythropoiesis. This hypothesized model can be applied to further computational studies in biological systems where synergistic effects of two ligands are seen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Wang W et al (2008) Synergy between erythropoietin and stem cell factor during erythropoiesis can be quantitatively described without co-signaling effects. Biotechnol Bioeng 99(5):1261–1272

    Article  CAS  Google Scholar 

  2. Panzenböck B et al (1998) Growth and differentiation of human stem cell factor/erythropoietin-dependent erythroid progenitor cells in vitro. Blood 92(10):3658–3668

    Google Scholar 

  3. Sakatoku H, Inoue S (1997) In Vitro proliferation and differentiation of erythroid progenitors of cord blood. Stem Cells 15(4):268–274

    Article  CAS  Google Scholar 

  4. Wierenga ATJ et al (2003) Erythropoietin-induced serine 727 phosphorylation of STAT3 in erythroid cells is mediated by a MEK-, ERK-, and MSK1-dependent pathway. Exp Hematol 31(5):398–405

    Article  CAS  Google Scholar 

  5. Rubiolo C et al (2006) A balance between Raf-1 and Fas expression sets the pace of erythroid differentiation. Blood 108(1):152–159

    Article  CAS  Google Scholar 

  6. Wang J et al (2007) Synergistic effect of cytokines EPO, IL-3 and SCF on the proliferation, differentiation and apoptosis of erythroid progenitor cells. Clin Hemorheol Microcirc 37(4):291–299

    CAS  Google Scholar 

  7. Sui XW et al (1998) Synergistic activation of MAP kinase (ERK1/2) by erythropoietin and stem cell factor is essential for expanded erythropoiesis. Blood 92(4):1142–1149

    CAS  Google Scholar 

  8. Arcasoy MO, Jiang X (2005) Co-operative signalling mechanisms required for erythroid precursor expansion in response to erythropoietin and stem cell factor. Br J Haematol 130(1):121–129

    Article  CAS  Google Scholar 

  9. Rylski M et al (2003) GATA-1-mediated proliferation arrest during erythroid maturation. Mol Cell Biol 23(14):5031–5042

    Article  CAS  Google Scholar 

  10. Pan X et al (2005) Graded levels of GATA-1 expression modulate survival, proliferation, and differentiation of erythroid progenitors. J Biol Chem 280(23):22385–22394

    Article  CAS  Google Scholar 

  11. Munugalavadla V et al (2005) Repression of c-kit and its downstream substrates by GATA-1 inhibits cell proliferation during erythroid maturation. Mol Cell Biol 25(15):6747–6759

    Article  CAS  Google Scholar 

  12. Papetti M et al (2010) GATA-1 directly regulates p21 gene expression during erythroid differentiation. Cell Cycle 9(10):1972–1980

    Article  CAS  Google Scholar 

  13. Welch JJ et al (2004) Global regulation of erythroid gene expression by transcription factor GATA-1. Blood 104(10):3136–3147

    Article  CAS  Google Scholar 

  14. Wadman IA et al (1994) The MAP kinase phosphorylation site of TAL1 occurs within a transcriptional activation domain. Oncogene 9(12):3713–3716

    CAS  Google Scholar 

  15. Chiba T, Ikawa Y, Todokoro K (1991) GATA-1 transactivates erythropoietin receptor gene, and erythropoietin receptor-mediated signals enhance GATA-1 gene expression. Nucleic Acids Res 19(14):3843–3848

    Article  CAS  Google Scholar 

  16. Zhao W et al (2006) Erythropoietin stimulates phosphorylation and activation of GATA-1 via the PI3-kinase/AKT signaling pathway. Blood 107(3):907–915

    Article  CAS  Google Scholar 

  17. Tsai SF, Strauss E, Orkin SH (1991) Functional analysis and in vivo footprinting implicate the erythroid transcription factor GATA-1 as a positive regulator of its own promoter. Genes Dev 5(6):919–931

    Article  CAS  Google Scholar 

  18. Hernandez–Hernandez A et al (2006) Acetylation and MAPK phosphorylation cooperate to regulate the degradation of active GATA-1. EMBO J 25(14):3264–3274

    Article  Google Scholar 

  19. Tokunaga M et al (2010) BCR-ABL but Not JAK2 V617F Inhibits Erythropoiesis through the Ras Signal by Inducing p21(CIP1/WAF1). J Biol Chem 285(41):31774–31782

    Article  CAS  Google Scholar 

  20. Roeder I, Glauche I (2006) Towards an understanding of lineage specification in hematopoietic stem cells: a mathematical model for the interaction of transcription factors GATA-1 and PU.1. J Theor Biol 241:852–865

    Article  CAS  Google Scholar 

  21. Crauste F et al (2010) Mathematical study of feedback control roles and relevance in stress erythropoiesis. J Theor Biol 263(3):303–316

    Article  Google Scholar 

  22. Palani S, Sarkar CA (2009) Integrating extrinsic and intrinsic cues into a minimal model of lineage commitment for hematopoietic progenitors. PLoS Comput Biol 5(9):e1000518

    Article  Google Scholar 

  23. Tang T et al (1999) Mitogen-activated protein kinase mediates erythropoietin-induced phosphorylation of the TAL1/SCL transcription factor in murine proerythroblasts. Biochem J 343(Pt 3):615–620

    Article  CAS  Google Scholar 

  24. Busfield SJ et al (1995) The major erythroid DNA-binding protein Gata-1 is stimulated by erythropoietin but not by chemical inducers of erythroid-differentiation. Eur J Biochem 230(2):475–480

    Article  CAS  Google Scholar 

  25. Droin N et al (2008) A role for caspases in the differentiation of erythroid cells and macrophages. Biochimie 90(2):416–422

    Article  CAS  Google Scholar 

  26. Tsai SF, Strauss E, Orkin SH (1991) Functional analysis and in vivo footprinting implicate the erythroid transcription factor GATA-1 as a positive regulator of its own promoter. Genes Dev 5(6):919–931

    Article  CAS  Google Scholar 

  27. Lindern MV, Schmidt U, Beug H (2004) Control of erythropoiesis by erythropoietin and stem cell factor: a novel role for Bruton’s Tyrosine Kinase. Cell Cycle 3:876–879

    Article  Google Scholar 

  28. Pop R, Shearstone JR, Shen Q, Liu Y, Hallstrom K et al (2010) A key commitment step in erythropoiesis is synchronized with the cell cycle clock through mutual inhibition between PU.1 and S-Phase progression. PLoS Biol 8(9):e1000484. doi:10.1371/journal.pbio.1000484

  29. Torii S et al (2006) ERK MAP kinase in G cell cycle progression and cancer. Cancer Sci 97(8):697–702

    Article  CAS  Google Scholar 

  30. Suzuki N et al (2003) Identification and characterization of 2 types of erythroid progenitors that express GATA-1 at distinct levels. Blood 102(10):3575–3583

    Article  CAS  Google Scholar 

  31. Chiba T, Ikawa Y, Todokoro K (1991) GATA-1 transactivates erythropoietin receptor gene, and erythropoietin receptor-mediated signals enhance GATA-1 gene expression. Nucleic Acids Res 19(14):3843–3848

    Article  CAS  Google Scholar 

  32. Zhao W et al (2006) Erythropoietin stimulates phosphorylation and activation of GATA-1 via the PI3-kinase/AKT signaling pathway. Blood 107(3):907–915

    Article  CAS  Google Scholar 

  33. Kiparissides A et al (2011) Modelling the Delta1/Notch1 pathway: in search of the mediator(s) of neural stem cell differentiation. PLoS ONE 6(2):e14668

    Article  CAS  Google Scholar 

  34. Kontoravdi C, Pistikopoulos EN, Mantalaris A (2010) Systematic development of predictive mathematical models for animal cell cultures. Comput Chem Eng 34(8): 1192–1198

    Google Scholar 

  35. Ho Y et al (2012) A computational approach for understanding and improving GS-NSO antibody production under hyperosmotic conditions. J Biosci Bioeng 113(1):88–98

    Article  CAS  Google Scholar 

  36. Koutinas M et al (2010) The regulatory logic of m-xylene biodegradation by Pseudomonas putida mt-2 exposed by dynamic modelling of the principal node Ps/Pr of the TOL plasmid. Environ Microbiol 12(6):1705–1718

    Article  CAS  Google Scholar 

  37. Kiparissides A et al (2009) Global sensitivity analysis challenges in biological systems modeling. Ind Eng Chem Res 48(15): 7168–7180. doi:10.1021/ie900139x

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayasari Lim.

Appendices

Appendix 1: model equations

Reactions for the model

From the left hand side of the proposed model schematic (Fig. 2), the following reactions are associated with cell proliferation.

$$\begin{aligned} & \to R_{\text{a}}R1_{\text{a}} = k1 \\ & R_{\text{a}} \to R2_{\text{a}} = k2*R_{\text{a}} \\ & R_{\text{a}} \to C_{\text{a}} R3_{\text{a}} = k3*L_{\text{a}} *R_{\text{a}} \\ & C_{\text{a}} \to R_{\text{a}} R4_{\text{a}} = k4*C_{\text{a}} \\ & C_{\text{a}} \to R5_{\text{a}} = k5*C_{\text{a}} \\ & \to {\text{IF}}_{\text{a}}R6_{\text{a}} = k6 \\ & {\text{IF}}_{\text{a}} \to R7_{\text{a}} = k7*{\text{IF}}_{\text{a}} \\ & {\text{IF}}_{\text{a}} \to {\text{AF}}_{\text{a}} \\ & R8_{\text{a}} = \frac{{k8*{\text{IF}}_{\text{a}} *(k_{\text{a}} *C_{\text{a}} + k_{\text{b}} *C_{\text{b}} )}}{{k81 + {\text{IF}}_{\text{a}} }}\\ & \qquad *\frac{{\left( {k_{\text{a}} *C_{\text{a}} + k_{\text{b}} *C_{\text{b}} } \right)}}{{\left( {k_{\text{a}} *C_{\text{a}} + k_{\text{b}} *C_{\text{b}} } \right) + K}}*\frac{{L_{\text{a}}^{ 3} }}{{L_{\text{a}}^{ 3} + 100^{3} }}*\frac{{L_{\text{b}}^{ 3} }}{{L_{\text{b}}^{ 3} + 100^{3} }} \\ & {\text{AF}}_{\text{a}} \to {\text{IF}}_{\text{a}}R9_{\text{a}} = \frac{{k9*P_{\text{a}} *{\text{AF}}_{\text{a}} }}{{k91 + {\text{AF}}_{\text{a}} }} \\ & {\text{AF}}_{\text{a}} \to R10_{\text{a}} = k10*{\text{AF}}_{\text{a}} \\ & \to R_{\text{a}}R11_{\text{a}} = \frac{{k11*{\text{AF}}_{\text{a}} }}{{k111*\left( {1 + \frac{{{\text{AF}}_{\text{b}} }}{kI}} \right) + {\text{AF}}_{\text{a}} }} \\ & \to {\text{IF}}_{\text{a}}R12_{\text{a}} = \frac{{k12*{\text{AF}}_{\text{a}} }}{{k121*\left( {1 + \frac{{{\text{AF}}_{\text{b}} }}{kI}} \right) + {\text{AF}}_{\text{a}} }} .\\ \end{aligned}$$

From the right hand side of the proposed model schematic (Fig. 2), the following reactions are associated with cell differentiation.

$$ \begin{aligned} & \to R_{\text{b}} R1_{\text{b}} = k\_1 \\ & R_{\text{b}} \to R2_{\text{b}} = k\_2*R_{\text{b}} \\ & R_{\text{b}} \to C_{\text{b}} R3_{\text{b}} = k\_3*L_{\text{b}} *R_{\text{b}} \\ & C_{\text{b}} \to R_{\text{b}} R4_{\text{b}} = k\_4*C_{\text{b}} \\ & C_{\text{b}} \to R5_{\text{b}} = k\_5*C_{\text{b}} \\ & \to {\text{IF}}_{\text{b}} R6_{\text{b}} = k\_6 \\ & {\text{IF}}_{\text{b}} \to R7_{\text{b}} = k\_7*{\text{IF}}_{\text{b}} \\ & {\text{IF}}_{\text{b}} \to {\text{AF}}_{\text{b}} R8_{\text{b}} = \frac{{k\_8*IF_{\text{b}} *C_{\text{b}} }}{{k\_81 + {\text{IF}}_{\text{b}} }} \\ & {\text{AF}}_{\text{b}} \to {\text{IF}}_{\text{b}} R9_{\text{b}} = \frac{{k\_9*P_{\text{b}} *{\text{AF}}_{\text{b}} }}{{k\_91 + {\text{AF}}_{\text{b}} }} \\ & {\text{AF}}_{\text{b}} \to R10_{\text{b}} = k\_10*{\text{AF}}_{\text{b}} \\ & \to R_{\text{b}} R11_{\text{b}} = \frac{{k\_11*{\text{AF}}_{\text{b}} }}{{k\_111*\left( {1 + \frac{{{\text{AF}}_{\text{a}} }}{k\_I}} \right) + {\text{AF}}_{\text{b}} }} \\ & \to {\text{IF}}_{\text{b}} R12_{\text{b}} = \frac{{k\_12*{\text{AF}}_{\text{b}} }}{{k\_121*\left( {1 + \frac{{{\text{AF}}_{\text{a}} }}{k\_I}} \right) + {\text{AF}}_{\text{b}} }}. \\ \end{aligned}$$

Differential equations for the model

$$\begin{aligned} \frac{{d(R_{\text{a}} )}}{dt} & = k1 - k2*R_{\text{a}} - k3*L_{\text{a}} *R_{\text{a}} + k4*C_{\text{a}} + \frac{{k11*{\text{AF}}_{\text{a}} }}{{k111*\left( {1 + \frac{{{\text{AF}}_{\text{b}} }}{kI}} \right) + {\text{AF}}_{\text{a}} }} \\ \frac{{d(C_{\text{a}} )}}{dt} & = k3*L_{\text{a}} *R_{\text{a}} - k4*C_{\text{a}} - k5*C_{\text{a}} \\ \frac{{d({\text{IF}}_{\text{a}} )}}{dt} & = k6 - k7*{\text{IF}}_{\text{a}} - \frac{{k8*{\text{IF}}_{\text{a}} *\left( {k_{\text{a}} *C_{\text{a}} + k_{\text{b}} *C_{\text{b}} } \right)}}{{k81 + {\text{IF}}_{\text{a}} }}*\frac{{\left( {k_{\text{a}} *C_{\text{a}} + k_{\text{b}} *C_{\text{b}} } \right)}}{{\left( {k_{\text{a}} *C_{\text{a}} + k_{\text{b}} *C_{\text{b}} } \right) + K}}*\frac{{L_{\text{a}}^{3} }}{{L_{\text{a}}^{3} + 100^{3} }}*\frac{{L_{\text{b}}^{3} }}{{L_{\text{b}}^{3} + 100^{3} }} \\ & \quad+ \frac{{k9*P_{\text{a}} *{\text{AF}}_{\text{a}} }}{{k91 + {\text{AF}}_{\text{a}} }} + \frac{{k\_12*{\text{AF}}_{\text{a}} }}{{k\_121*\left( {1 + \frac{{{\text{AF}}_{\text{b}} }}{k\_I}} \right) + {\text{AF}}_{\text{a}} }} \\ \frac{{d({\text{AF}}_{\text{a}} )}}{dt} & = \frac{{k8*{\text{IF}}_{\text{a}} *\left( {k_{\text{a}} *C_{\text{a}} + k_{\text{b}} *C_{\text{b}} } \right)}}{{k81 + IF_{\text{a}} }}*\frac{{\left( {k_{\text{a}} *C_{\text{a}} + k_{\text{b}} *C_{\text{b}} } \right)}}{{\left( {k_{\text{a}} *C_{\text{a}} + k_{\text{b}} *C_{\text{b}} } \right) + K}}*\frac{{L_{\text{a}}^{3} }}{{L_{\text{a}}^{ 3} + 100^{3} }}*\frac{{L_{\text{b}}^{ 3} }}{{L_{\text{b}}^{3} + 100^{3} }} - \frac{{k9*P_{\text{a}} *{\text{AF}}_{\text{a}} }}{{k91 + {\text{AF}}_{\text{a}} }} - k10*{\text{AF}}_{\text{a}} \\ \frac{{d(R_{\text{b}} )}}{dt} & = k\_1 - k\_2*R_{\text{b}} - k\_3*L_{\text{b}} *R_{\text{b}} + k\_4*C_{\text{b}} + \frac{{k\_11*{\text{AF}}_{\text{b}} }}{{k\_111*\left( {1 + \frac{{{\text{AF}}_{\text{a}} }}{k\_I}} \right){\text{ + AF}}_{\text{b}} }} \\ \frac{{d(C_{\text{b}} )}}{dt} & = k\_3*L_{\text{b}} *R_{\text{b}} - k\_4*C_{\text{b}} - k\_5*C_{\text{b}} \\ \frac{{d({\text{IF}}_{\text{b}} )}}{dt} & = k\_6 - k\_7*{\text{IF}}_{\text{b}} - \frac{{k\_8*{\text{IF}}_{\text{b}} *C_{\text{b}} }}{{k\_81 + {\text{IF}}_{\text{b}} }} + \frac{{k\_9*P_{\text{b}} *{\text{AF}}_{\text{b}} }}{{k\_91{\text{ + AF}}_{\text{b}} }} + \frac{{k\_12*{\text{AF}}_{\text{b}} }}{{k\_121*\left( {1 + \frac{{{\text{AF}}_{\text{a}} }}{k\_I}} \right){\text{ + AF}}_{\text{b}} }} \\ \frac{{d({\text{AF}}_{\text{b}} )}}{dt} & = \frac{{k\_8 * {\text{IF}}_{\text{b}} *C_{\text{b}} }}{{k\_81{\text{ + IF}}_{\text{b}} }} + \frac{{k\_9*P_{\text{b}} * {\text{AF}}_{\text{b}} }}{{k\_91 + {\text{AF}}_{\text{b}} }} - k\_10 * {\text{AF}}_{\text{b}} \\ \end{aligned}$$

Appendix 2: list of model parameters

See the Table 2.

Table 2 Kinetic parameters referenced from [21]

Appendix 3: model variables and parameter values

See the Tables 3, 4, 5.

Table 3 Initial conditions
Table 4 Sets of values for erythropoiesis
Table 5 Values used for sensitivity analysis

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phan, T.H.H., Saraf, P., Kiparissides, A. et al. An in silico erythropoiesis model rationalizing synergism between stem cell factor and erythropoietin. Bioprocess Biosyst Eng 36, 1689–1702 (2013). https://doi.org/10.1007/s00449-013-0944-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-0944-0

Keywords