Skip to main content

Polyunsaturated fatty acid production by marine bacteria


Polyunsaturated fatty acids are important in maintaining human health. Limitations associated with current sources of ω-3 fatty acids and ω-6 fatty acids, from animal and plant sources, have led to increased interest in microbial production. Marine bacteria may provide a suitable alternative, although the isolation of production strains and the identification of operating conditions must be addressed before manufacturing processes become economically viable. Marine isolate 560 was identified as an eicosapentaenoic acid (EPA) producer via GC/MS. The isolate was initially identified as Vibrio cyclitrophicus by 16S rRNA sequencing. Statistically based experimental designs were applied to the optimisation of medium components and environmental factors for the production of EPA. A Plackett–Burman design was used to screen for the effect of temperature, pH, and media components. Subsequently, the concentrations of NaCl, yeast extract, and peptone, identified as significant factors, were optimised using a central composite design. The predicted optimal combination of media components for maximum EPA production (4.8 mg/g dry weight) was determined as 7.9 g/l peptone, 16.2 g/l NaCl, and 6.2 g/l yeast extract. On transfer of this process to bioreactor cultivation, where a range of pH and DO values were tested, the maximum amount of EPA produced increased to 7.5 mg/g dry weight and 10 % of the total fatty acid.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Sijtsma L, Swaaf ME (2004) Biotechnological production and applications of the omega-3 polyunsaturated fatty acid docosahexaenoic acid. Appl Microbiol Biotechnol 64(2):146–153

    Article  CAS  Google Scholar 

  2. 2.

    Tapiero H, Nguyen Ba G, Couvreur P, Tew KD (2002) Polyunsaturated fatty acids (PUFA) and eicosanoids in human health and pathologies. Biomed Pharmacother 56(5):215–222

    Article  CAS  Google Scholar 

  3. 3.

    Gill I, Valivety R (1997) Polyunsaturated fatty acids, part 1: occurrence, biological activities and applications. Trends Biotechnol 15(10):401–409

    Article  CAS  Google Scholar 

  4. 4.

    Bergé J, Barnathan G (2005) Fatty Acids from lipids of marine organisms: molecular biodiversity, roles as biomarkers, biologically active compounds, and economical aspects marine biotechnology I. In: Ulber R, Le Gal Y (eds) Advances in biochemical engineering/biotechnology, vol 96. Springer Berlin, Heidelberg, pp 49–125

    Google Scholar 

  5. 5.

    Metz J, Roessler P, Facciotti D, Levering C, Dittrich F, Lassner M, Valentine R, Lardizabal K, Domergue F, Yamada A, Yazawa K, Knauf V, Browse J (2001) Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 293(5528):290–293

    Article  CAS  Google Scholar 

  6. 6.

    Yazawa K (1996) Production of eicosapentaenoic acid from marine bacteria. Lipids 31(1):297–300

    Article  Google Scholar 

  7. 7.

    Certik M, Shimizu S (1999) Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J Biosci Bioeng 87(1):1–14

    Article  CAS  Google Scholar 

  8. 8.

    Kidd PM (2007) Omega-3 DHA and EPA for cognition, behaviour, and mood: clinical findings and structural–functional synergies with cell membrane phospholipids. Altern med rev 12(3):207–227

    Google Scholar 

  9. 9.

    Wijendran V, Huang MC, Diau GY, Boehm G, Nathanielsz PW, Brenna JT (2002) Efficacy of dietary arachidonic acid provided as triglyceride or phospholipid as substrates for brain arachidonic acid accretion in Baboon neonates. Pediatr Res 51(3):265–272

    Article  CAS  Google Scholar 

  10. 10.

    Russell NJ, Nichols DS (1999) Polyunsaturated fatty acids in marine bacteria—a dogma rewritten. Microbiology 145(4):767–779

    Article  CAS  Google Scholar 

  11. 11.

    Das T, Thurmond JM, Bobik E, Leonard AE, Parker-Barnes JM, Huang YS, Mukerji P (2000) Polyunsaturated fatty acid-specific elongation enzymes. Biochem Soc Trans 28:658–660

    Article  CAS  Google Scholar 

  12. 12.

    Wawrik B, Kerkhof L, Zylstra GJ, Kukor JJ (2005) Identification of unique type II polyketide synthase genes in soil. Appl Environ Microbiol 71(5):2232–2238

    Article  CAS  Google Scholar 

  13. 13.

    Gentile G, Bonasera V, Amico C, Giuliano L, Yakimov MM (2003) Shewanella sp. GA-22, a psychrophilic hydrocarbonoclastic antarctic bacterium producing polyunsaturated fatty acids. J Appl Microbiol 95(5):1124–1133

    Article  CAS  Google Scholar 

  14. 14.

    Neefs JM, Van de Peer Y, De Rijk P, Chapelle S, De Wachter R (1993) Compilation of small ribosomal subunit RNA structures. Nucleic Acids Res 21(13):3025–3049

    Article  CAS  Google Scholar 

  15. 15.

    Lang S, Hüners M, Lurtz V (2005) Bioprocess engineering data on the cultivation of marine prokaryotes and fungi marine biotechnology II. In: Ulber R, Le Gal Y (eds) Advances in biochemical engineering/biotechnology, vol 97. Springer Berlin, Heidelberg, pp 585–619

    Google Scholar 

  16. 16.

    Montgomery DC (2000) Design and analysis of experiments, 5th edn. Wiley, Arizona

    Google Scholar 

  17. 17.

    Watanabe K, Ishikawa C, Yazawa K, Kondo K, Kawaguchi A (1996) Fatty acid and lipid composition of an eicosapentaenoic acid-producing marine bacterium. J Mar Biotechnol 4:104–112

    CAS  Google Scholar 

  18. 18.

    Jostensen JP, Landfald B (1997) High prevalence of polyunsaturated-fatty-acid producing bacteria in arctic invertebrates. FEMS Microbiol Lett 151(1):95–101

    Article  CAS  Google Scholar 

  19. 19.

    Lee SJ, Kim C, Seo PS, Kwon O, Hur BK, Seo JW (2008) Enhancement of heterologous production of eicosapentaenoic acid in Escherichia coli by substitution of promoter sequences within the biosynthesis gene cluster. Biotechnol Lett 30(12):2139–2142

    Article  CAS  Google Scholar 

  20. 20.

    Yongmanitchai W, Ward OP (1991) Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions. Appl Environ Microbiol 57(2):419–425

    CAS  Google Scholar 

  21. 21.

    Hedlund BP, Staley JT (2001) Vibrio cyclotrophicus sp. nov., a polycyclic aromatic hydrocarbon (PAH)-degrading marine bacterium. Int J Syst Evol Microbiol 51:61–66

    CAS  Google Scholar 

  22. 22.

    Shimiziu S, Kawashima H, Shinmen Y, Akimoto K, Yamada H (1988) Production of eicosapentaenoic acid by Mortierella fungi. J Am Oil Chem Soc 65(9):1455–1459

    Article  Google Scholar 

  23. 23.

    Akimoto M, Ishii T, Yamagaki K, Ohtaguchi K, Koide K, Yazawa K (1991) Metal salts requisite for the production of eicosapentaenoic acid by a marine bacterium isolated from mackerel intestines. J Am Oil Chem Soc 68(7):504–508

    Article  CAS  Google Scholar 

  24. 24.

    Guchhait RB, Polakis SE, Dimroth P, Stoll E, Moss J, Lane MD (1974) Acetyl coenzyme A carboxylase system of Escherichia coli. J Biol Chem 249(20):6633–6645

    CAS  Google Scholar 

  25. 25.

    Botao Z, Jinlai M, Zhou Z, Guodong W, Quanfu W, Guangyou L, Wanshun L (2007) Screening and optimization of EPA-producing antarctic psychrophilic bacterium Shewanella sp. NJ136. High tech lett 13:95–102

    Google Scholar 

  26. 26.

    Okuyama H, Orikasa Y, Nishida T (2008) Significance of antioxidative functions of eicosapentaenoic and docosahexaenoic acids in marine microorganisms. Appl Environ Microbiol 74(3):570–574

    Article  CAS  Google Scholar 

  27. 27.

    Nishida T, Morita N, Yano Y, Orikasa Y, Okuyama H (2007) The antioxidative function of eicosapentaenoic acid in a marine bacterium, Shewanella marinintestina IK-1. FEBS Lett 581(22):4212–4216

    Article  CAS  Google Scholar 

  28. 28.

    Amiri-Jami M, Wang H, Kakuda Y, Griffiths M (2006) Enhancement of polyunsaturated fatty acid production by Tn5 transposon in Shewanella baltica. Biotechnol Lett 28(15):1187–1192

    Article  CAS  Google Scholar 

  29. 29.

    Ringo E, Sinclair PD, Birkbeck H, Barbour A (1992) Production of eicosapentaenoic acid (20:5n-3) by Vibrio pelagius isolated from turbot (Scophthalmus maximus (L.)) larvae. Appl Environ Microbiol 58(11):3777–3778

    CAS  Google Scholar 

  30. 30.

    Freese E, Rütters H, Köster J, Rullkötter J, Sass H (2009) Gammaproteobacteria as a possible source of eicosapentaenoic acid in anoxic intertidal sediments. Microb Ecol 57(3):444–454

    Article  CAS  Google Scholar 

Download references


The authors acknowledge the support of the officers and crew of RRS James Cook W. D. K. Reid and Dr. B. Wigham for the provision of sediment samples made available for this study. In addition, authors acknowledge the Egyptian Ministry of Higher Education and Faculty of Science at Mansoura University for funding the research.

Author information



Corresponding author

Correspondence to Jarka Glassey.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Abd Elrazak, A., Ward, A.C. & Glassey, J. Polyunsaturated fatty acid production by marine bacteria. Bioprocess Biosyst Eng 36, 1641–1652 (2013).

Download citation


  • Polyunsaturated fatty acids (PUFAs)
  • Plackett–Burman
  • Central composite design
  • Bioreactor