Skip to main content

Advertisement

Log in

Transcriptome analysis of xylose metabolism in the thermotolerant methylotrophic yeast Hansenula polymorpha

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The thermotolerant methylotrophic yeast Hansenula polymorpha is able to grow at elevated temperature up to 48 °C as one of a few yeast strains which are naturally capable of alcoholic fermentation of xylose, a pentose sugar abundant in lignocellulosic biomass. However, the current level of ethanol production from xylose by H. polymorpha is still very low compared to those of other xylose-fermenting strains. Therefore, it is necessary to analyze and remodel the xylose metabolism in H. polymorpha at the whole genome level to identify and overcome these limits. In the present study, the transcriptomes of H. polymorpha grown on xylose were compared with those of glucose-grown cells under both aerobic and microaerobic conditions. Approximately, two percent of H. polymorpha genes were either up- or down-regulated by more than two-fold during the growth on xylose. The majority of the up-regulated genes were involved in metabolism. Some genes involved in xylose metabolism, such as XYL1, XYL2, and TAL1 were also up-regulated, despite the fact that the differences in their induction level were only about three-fold. On the other hand, the majority of the down-regulated genes were involved in metabolism and cellular transport. Interestingly, some genes involved in glycolysis and ethanol fermentation were also repressed during growth on xylose, suggesting that these genes are good targets for engineering H. polymorpha to improve xylose fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Herr JR (2011) Bioenergy from trees. New Phytol 192:313–315

    Article  Google Scholar 

  2. Jeffries TW, Jin YS (2004) Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol 63:495–509

    Article  CAS  Google Scholar 

  3. Wohlbach DJ, Kuo A, Sato TK, Potts KM, Salamov AA, Labutti KM, Sun H, Clum A, Pangilinan JL, Lindquist EA, Lucas S, Lapidus A, Jin M, Gunawan C, Balan V, Dale BE, Jeffries TW, Zinkel R, Barry KW, Grigoriev IV, Gasch AP (2011) Comparative genomics of xylose-fermenting fungi for enhanced biofuel production. Proc Natl Acad Sci USA 108:13212–13217

    Article  CAS  Google Scholar 

  4. Hahn-Hagerdal B, Karhumaa K, Jeppsson M, Gorwa-Grauslund MF (2007) Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol 108:147–177

    Google Scholar 

  5. Salusjarvi L, Kankainen M, Soliymani R, Pitkanen JP, Penttila M, Ruohonen L (2008) Regulation of xylose metabolism in recombinant Saccharomyces cerevisiae. Microb Cell Fact 7:18

    Article  Google Scholar 

  6. Agbogbo FK, Coward-Kelly G (2008) Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast Pichia stipitis. Biotechnol Lett 30:1515–1524

    Article  CAS  Google Scholar 

  7. Jeffries TW, Grigoriev IV, Grimwood J, Laplaza JM, Aerts A, Salamov A, Schmutz J, Lindquist E, Dehal P, Shapiro H, Jin YS, Passoth V, Richardson PM (2007) Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat Biotechnol 25:319–326

    Article  CAS  Google Scholar 

  8. Gellissen G (2002) Hansenula polymorpha: biology and applications. Wiley, Weinheim

    Google Scholar 

  9. Park JN, Sohn MJ, Oh DB, Kwon O, Rhee SK, Hur CG, Lee SY, Gellissen G, Kang HA (2007) Identification of the cadmium-inducible Hansenula polymorpha SEO1 gene promoter by transcriptome analysis and its application to whole-cell heavy-metal detection systems. Appl Environ Microbiol 73:5990–6000

    Article  CAS  Google Scholar 

  10. Oh DB, Park JS, Kim MW, Cheon SA, Kim EJ, Moon HY, Kwon O, Rhee SK, Kang HA (2008) Glycoengineering of the methylotropic yeast Hansenula polymorpha for the production of glycoproteins with trimannosyl core N-glycan by blocking core oligosaccharide assembly. Biotechnol J 3:659–668

    Article  CAS  Google Scholar 

  11. Oh KS, Kwon O, Oh YW, Sohn MJ, Jung S, Kim YK, Kim MG, Lee SK, Gellissen G, Kang HA (2004) Fabrication of a partial genome microarray of the methylotrophic yeast Hansenula polymorpha: optimization and evaluation of transcript profiling. J Microbiol Biotechnol 14(6):1239–1248

    CAS  Google Scholar 

  12. van Zutphen T, Baerends RJ, Susanna KA, de Jong A, Kuipers OP, Veenhuis M, van der Klei IJ (2010) Adaptation of Hansenula polymorpha to methanol: a transcriptome analysis. BMC Genomics 11:1

    Article  Google Scholar 

  13. van der Klei IJ, Yurimoto H, Sakai Y, Veenhuis M (2006) The significance of peroxisomes in methanol metabolism in methylotrophic yeast. Biochim Biophys Acta 1763:1453–1462

    Article  Google Scholar 

  14. Escalante J, Caminal G, de Mas C (1990) Biomass production by a thermotolerant yeast: Hansenula polymorpha. J Chem Technol Biotechnol 48:61–70

    Article  CAS  Google Scholar 

  15. Ryabova OB, Chmil OM, Sibirny AA (2003) Xylose and cellobiose fermentation to ethanol by the thermotolerant methylotrophic yeast Hansenula polymorpha. FEMS Yeast Res 4:157–164

    Article  CAS  Google Scholar 

  16. Ishchuk OP, Voronovsky AY, Abbas CA, Sibirny AA (2009) Construction of Hansenula polymorpha strains with improved thermotolerance. Biotechnol Bioeng 104(5):911–919

    Article  CAS  Google Scholar 

  17. Dmytruk OV, Dmytruk KV, Abbas CA, Voronovsky AY, Sibirny AA (2008) Engineering of xylose reductase and overexpression of xylitol dehydrogenase and xylulokinase improves xylose alcoholic fermentation in the thermotolerant yeast Hansenula polymorpha. Microb Cell Fact 7:21

    Article  Google Scholar 

  18. Dmytruk OV, Voronovsky AY, Abbas CA, Dmytruk KV, Ishchuk OP, Sibirny AA (2008) Overexpression of bacterial xylose isomerase and yeast host xylulokinase improves xylose alcoholic fermentation in the thermotolerant yeast Hansenula polymorpha. FEMS Yeast Res 8(1):165–173

    Article  CAS  Google Scholar 

  19. Ishchuk OP, Voronovsky AY, Stasyk OV, Gayda GZ, Gonchar MV, Abbas CA, Sibirny AA (2008) Overexpression of pyruvate decarboxylase in the yeast Hansenula polymorpha results in increased ethanol yield in high-temperature fermentation of xylose. FEMS Yeast Res 8(7):1164–1174

    Article  CAS  Google Scholar 

  20. Suwannarangsee S, Oh DB, Seo JW, Kim CH, Rhee SK, Kang HA, Chulalaksananukul W, Kwon O (2010) Characterization of alcohol dehydrogenase 1 of the thermotolerant methylotrophic yeast Hansenula polymorpha. Appl Microbiol Biotechnol 88:497–507

    Article  CAS  Google Scholar 

  21. Suwannarangsee S, Kim S, Kim OC, Oh DB, Seo JW, Kim CH, Rhee SK, Kang HA, Chulalaksananukul W, Kwon O (2012) Characterization of alcohol dehydrogenase 3 of the thermotolerant methylotrophic yeast Hansenula polymorpha. Appl Microbiol Biotechnol. doi:10.1007/s00253-011-3866-2

    Google Scholar 

  22. Kang HA, Kang W, Hong WK, Kim MW, Kim JY, Sohn JH, Choi ES, Choe KB, Rhee SK (2001) Development of expression systems for the production of recombinant human serum albumin using the MOX promoter in Hansenula polymorpha DL-1. Biotechnol Bioeng 76:175–185

    Article  CAS  Google Scholar 

  23. Voronovsky AY, Rohulya OV, Abbas CA, Sibirny AA (2009) Development of strains of the thermotolerant yeast Hansenula polymorpha capable of alcoholic fermentation of starch and xylan. Metab Eng 11(4–5):234–242

    Article  CAS  Google Scholar 

  24. Grabek-Lejko D, Kurylenko OO, Sibirny VA, Ubiyvovk VM, Penninckx M, Sibirny AA (2011) Alcoholic fermentation by wild-type Hansenula polymorpha and Saccharomyces cerevisiae versus recombinant strains with an elevated level of intracellular glutathione. J Ind Microbiol Biotechnol 38(11):1853–1859

    Article  CAS  Google Scholar 

  25. Kohrer K, Domdey H (1991) Preparation of high molecular weight RNA. Methods Enzymol 194:398–405

    Article  CAS  Google Scholar 

  26. Yu J, Othman MI, Farjo R, Zareparsi S, MacNee SP, Yoshida S, Swaroop A (2002) Evaluation and optimization of procedures for target labeling and hybridization of cDNA microarrays. Mol Vis 8:130–137

    CAS  Google Scholar 

  27. Pieler R, Sanchez-Cabo F, Hackl H, Thallinger GG, Trajanoski Z (2004) ArrayNorm: comprehensive normalization and analysis of microarray data. Bioinformatics 20(12):1971–1973

    Article  CAS  Google Scholar 

  28. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  Google Scholar 

  29. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:D277–D280

    Article  CAS  Google Scholar 

  30. Hasunuma T, Sung KM, Sanda T, Yoshimura K, Matsuda F, Kondo A (2011) Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae. Appl Microbiol Biotechnol 90(3):997–1004

    Article  CAS  Google Scholar 

  31. Hong M-E, Lee KS, Yub BJ, Sung YJ, Park SM, Koo HM, Kweon DH, Park JC (2010) Identification of gene targets eliciting improved alcohol tolerance in Saccharomyces cerevisiae through inverse metabolic engineering. J Biotechnol 149(1–2):52–59

    Article  CAS  Google Scholar 

  32. Leandro MJ, Fonseca C, Goncalves P (2009) Hexose and pentose transport in ascomycetous yeasts: an overview. FEMS Yeast Res 9:511–525

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the KRIBB Research Initiative Program and by the New and Renewable Energy Technology Development Program of the Korea Institute of Energy Technology Evaluation and Panning (KETEP) grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ohsuk Kwon.

Additional information

O.C. Kim and S. Suwannarangsee contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, O.C., Suwannarangsee, S., Oh, DB. et al. Transcriptome analysis of xylose metabolism in the thermotolerant methylotrophic yeast Hansenula polymorpha . Bioprocess Biosyst Eng 36, 1509–1518 (2013). https://doi.org/10.1007/s00449-013-0909-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-0909-3

Keywords