Skip to main content

Recovery of bovine lysozyme from transgenic sugarcane stalks: extraction, membrane filtration, and purification

Abstract

Increased industrial use of sugarcane (Saccharum spp. hybrid) for food and bioenergy has led to considerable improvements in its genetic transformation, which allowed the development of not only pest- and herbicide-resistant lines but also lines expressing high-value bioproducts and biopolymers. However, the economic benefits of using inexpensive transgenic plant systems for the production of industrial proteins could be offset by high downstream processing costs. In this work, transgenic sugarcane expressing recombinant bovine lysozyme (BvLz) was used to evaluate the feasibility of extraction and fractionation of recombinant proteins expressed in sugarcane stalks. Three pH levels (4.5, 6.0 and 7.5) and three salt concentrations (0, 50, and 150 mM NaCl) were tested to determine BvLz and total protein extractability. Two extraction conditions were selected to prepare BvLz extracts for further processing by cross-flow filtration, a suitable method for concentration and conditioning of extracts for direct applications or prior to chromatography. Partial removal of native proteins was achieved using a 100 kDa membrane but 20–30 % of the extracted BvLz was lost. Concentration of clarified extracts using a 3 kDa membrane resulted in twofold purification and 65 % recovery of BvLz. Loading of concentrated sugarcane extract on hydrophobic interaction chromatography (HIC) resulted in 50 % BvLz purity and 69 % recovery of BvLz.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Menkhaus TJ, Pate C, Krech A, Glatz CE (2004) Recombinant protein purification from pea. Biotechnol Bioeng 86(1):108–114

    Article  CAS  Google Scholar 

  2. 2.

    Nikolov ZL, Regan JT, Dickey LF, Woodard SL (2009) Purification of antibodies from transgenic plants. In: Gottschalk U (ed) Process scale purification of antibodies. John Wiley & Sons, Inc, New York, pp 387–406

    Chapter  Google Scholar 

  3. 3.

    Goldstein DA, Thomas JA (2004) Biopharmaceuticals derived from genetically modified plants. QJM 97(11):705–716. doi:10.1093/qjmed/hch121

    Article  CAS  Google Scholar 

  4. 4.

    Rybicki EP (2010) Plant-made vaccines for humans and animals. Plant Biotechnol J 8(5):620–637. doi:10.1111/j.1467-7652.2010.00507.x

    Article  CAS  Google Scholar 

  5. 5.

    Hood EE, Witcher DR, Maddock S, Meyer T, Baszczynski C, Bailey M, Flynn P, Register J, Marshall L, Bond D, Kulisek E, Kusnadi A, Evangelista R, Nikolov Z, Wooge C, Mehigh RJ, Hernan R, Kappel WK, Ritland D, Ping Li C, Howard JA (1997) Commercial production of avidin from transgenic maize: characterization of transformant, production, processing, extraction and purification. Mol Breeding 3(4):291–306

    Article  CAS  Google Scholar 

  6. 6.

    Woodard SL, Mayor JM, Bailey MR, Barker DK, Love RT, Lane JR, Delaney DE, McComas-Wagner JM, Mallubhotla HD, Hood EE, Dangott LJ, Tichy SE, Howard JA (2003) Maize (Zea mays)-derived bovine trypsin: characterization of the first large-scale, commercial protein product from transgenic plants. Biotechnol Appl Biochem 38(2):123–130. doi:10.1042/ba20030026

    Article  CAS  Google Scholar 

  7. 7.

    Howard JA, Hood E, Donald LS (2005) Bioindustrial and biopharmaceutical products produced in plants. In: Advances in agronomy, vol 85. Elsevier Academic Press, San Diego, pp 91–124

  8. 8.

    Fischer R, Stoger E, Shillberg S, Cristhou P, Twyman RM (2004) Plant-based production of biopharmaceuticals. Curr Opin Plant Biol 7:152–158

    Article  CAS  Google Scholar 

  9. 9.

    Nikolov ZL, Woodard SL (2004) Downstream processing of recombinant proteins from transgenic feedstock. Curr Opin Biotechnol 15(5):479–486

    Article  CAS  Google Scholar 

  10. 10.

    Wilken LR, Nikolov ZL (2012) Downstream processing of transgenic plant systems: protein recovery and purification strategies. In: Wang A, Ma S (eds) Molecular farming in plants: recent advances and future prospects, 1st edn. Springer, Berlin, p 282

  11. 11.

    Conley AJ, Zhu H, Le LC, Jevnikar AM, Lee BH, Brandle JE, Menassa R (2011) Recombinant protein production in a variety of Nicotiana hosts: a comparative analysis. Plant Biotechnol J 9(4):434–444. doi:10.1111/j.1467-7652.2010.00563.x

    Article  CAS  Google Scholar 

  12. 12.

    Lakshmanan P, Geijskes RJ, Aitken KS, Grof CLP, Bonnett GD, Smith GR (2005) Sugarcane biotechnology: the challenges and opportunities. In Vitro Cell Dev Pl 41:345–363

    Article  CAS  Google Scholar 

  13. 13.

    Cardona CA, Quintero JA, Paz IC (2010) Production of bioethanol from sugarcane bagasse: status and perspectives. Bioresource Technol 101(13):4754–4766. doi:10.1016/j.biortech.2009.10.097

    Article  CAS  Google Scholar 

  14. 14.

    Christy L, Arvinth S, Saravanakumar M, Kanchana M, Mukunthan N, Srikanth J, Thomas G, Subramonian N (2009) Engineering sugarcane cultivars with bovine pancreatic trypsin inhibitor (aprotinin) gene for protection against top borer (Scirpophaga excerptalis Walker). Plant Cell Rep 28(2):175–184

    Article  CAS  Google Scholar 

  15. 15.

    Wang M-L, Goldstein C, Su W, Moore PH, Albert HH (2005) Production of biologically active GM-CSF in sugarcane: a secure biofactory. Transgenic Res 14(2):167–178

    Article  Google Scholar 

  16. 16.

    Harrison MD, Geijskes J, Coleman HD, Shand K, Kinkema M, Palupe A, Hassall R, Sainz M, Lloyd R, Miles S, Dale JL (2011) Accumulation of recombinant cellobiohydrolase and endoglucanase in the leaves of mature transgenic sugar cane. Plant Biotechnol J 9(8):884–896. doi:10.1111/j.1467-7652.2011.00597.x

    Article  CAS  Google Scholar 

  17. 17.

    Damaj MB, Molina JJ, Buenrostro-Nava MT, Park-Kang H, Rossi D, Odokonyero D, Jifon JL, Nikolov Z, White S, Mirkov TE (2009) Developing sugarcane as a viable biofactory for high value proteins. In Vitro Cell Dev Biol Anim 45:S81–S82

    Google Scholar 

  18. 18.

    Hustad PD (2009) Frontiers in olefin polymerization: reinventing the world’s most common synthetic polymers. Science 325(5941):704–707. doi:10.1126/science.1174927

    Article  CAS  Google Scholar 

  19. 19.

    Petrasovits LA, Purnell MP, Nielsen LK, Brumbley SM (2007) Production of polyhydroxybutyrate in sugarcane. Plant Biotechnol J 5(1):162–172

    Article  CAS  Google Scholar 

  20. 20.

    McQualter RB, Chong BF, Meyer K, Van Dyk DE, O’Shea MG, Walton NJ, Viitanen PV, Brumbley SM (2005) Initial evaluation of sugarcane as a production platform for p-hydroxybenzoic acid. Plant Biotechnol J 3(1):29–41

    Article  CAS  Google Scholar 

  21. 21.

    Anderson D, Gnanasambandam A, Mills E, O’Shea M, Nielsen L, Brumbley S (2011) Synthesis of short-chain length/medium-chain length polyhydroxyalkanoate (PHA) copolymers in peroxisomes of transgenic sugarcane plants. Trop Plant Biol 4(3):170–184. doi:10.1007/s12042-011-9080-7

    Article  CAS  Google Scholar 

  22. 22.

    Dobson DE, Prager EM, Wilson AC (1984) Stomach lysozymes of ruminants. I. Distribution and catalytic properties. J Biol Chem 259(18):11607–11616

    CAS  Google Scholar 

  23. 23.

    Nonaka Y, Akieda D, Aizawa T, Watanabe N, Kamiya M, Kumaki Y, Mizuguchi M, Kikukawa T, Demura M, Kawano K (2009) X-ray crystallography and structural stability of digestive lysozyme from cow stomach. FEBS J 276(8):2192–2200

    Article  CAS  Google Scholar 

  24. 24.

    Wilcox CP, Weissinger AK, Long RC, Fitzmaurice LC, Mirkov TE, Swaisgood HE (1997) Production and purification of an active bovine lysozyme in tobacco (Nicotiana tabacum): utilization of value-added crop plants traditionally grown under intensive agriculture. J Agr Food Chem 45(7):2793–2797. doi:10.1021/jf970156r

    Article  CAS  Google Scholar 

  25. 25.

    Mirkov TE, Fitzmaurice LC (1998) Protection of plants against plant pathogens. US Patent 5850025 Patent

  26. 26.

    Yang M, Bower R, Burow MD, Paterson AH, Mirkov TE (2003) A rapid and direct approach to identify promoters that confer high levels of gene expression in monocots. Crop Sci 43:1805–1813

    Article  CAS  Google Scholar 

  27. 27.

    Beyene G, Buenrostro-Nava MT, Damaj MB, Gao S-J, Molina JJ, Mirkov TE (2011) Unprecedented enhancement of transient gene expression from minimal cassettes using a double terminator. Plant Cell Rep 30:13–25

    Article  CAS  Google Scholar 

  28. 28.

    Ingelbrecht IL, Irvine JE, Mirkov TE (1999) Posttranscriptional gene silencing in transgenic sugarcane. Dissection of homology-dependent virus resistance in a monocot that has a complex polyploid genome. Plant Physiol 119:1187–1198

    Article  CAS  Google Scholar 

  29. 29.

    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  Google Scholar 

  30. 30.

    Digan ME, Lair SV, Brierley RA, Siegel RS, Williams ME, Ellis SB, Kellaris PA, Provow SA, Craig WS, Veliçelebi G, Harpold MM, Thill GP (1989) Continuous production of a novel lysozyme via secretion from the yeast Pichia pastoris. Nat Biotechnol 7(2):160–164

    Article  CAS  Google Scholar 

  31. 31.

    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  32. 32.

    Azzoni AR, Farinas CS, Miranda EA (2005) Transgenic corn seed for recombinant protein production: relevant aspects on the aqueous extraction of native components. J Sci Food Agr 85:609–614

    Article  CAS  Google Scholar 

  33. 33.

    Wilken LR, Nikolov ZL (2006) Factors influencing recombinant human lysozyme extraction and cation exchange adsorption. Biotechnol Prog 22:745–752

    Article  CAS  Google Scholar 

  34. 34.

    Woodard SL, Wilken LR, Barros GOF, White SG, Nikolov ZL (2009) Evaluation of monoclonal antibody and phenolic extraction from transgenic Lemna for purification process development. Biotechnol Bioeng 104(3):562–571

    Article  CAS  Google Scholar 

  35. 35.

    Ott R, Longnecker M (2001) An introduction to statistical methods and data analysis. Duxbury Pacific Grove, CA

    Google Scholar 

  36. 36.

    Barros GOF, Woodard SL, Nikolov ZL (2011) Phenolics removal from transgenic Lemna minor extracts expressing mAb and impact on mAb production cost. Biotechnol Prog 27(2):410–418. doi:10.1002/btpr.543

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank BioCane, Inc., a subsidiary of Growers Research Group, LLC. for the financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Z. L. Nikolov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barros, G.O.F., Ballen, M.A.T., Woodard, S.L. et al. Recovery of bovine lysozyme from transgenic sugarcane stalks: extraction, membrane filtration, and purification. Bioprocess Biosyst Eng 36, 1407–1416 (2013). https://doi.org/10.1007/s00449-012-0878-y

Download citation

Keywords

  • Sugarcane
  • Bovine lysozyme (BvLz)
  • Recombinant protein extraction
  • Membrane filtration
  • Downstream processing