Skip to main content
Log in

Effect of magnetic field on the ultrafiltration of bovine serum albumin

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This work evaluates the effects of a static magnetic field on the permeation of bovine serum albumin (BSA) in a tangential ultrafiltration membrane module. Experimental tests were carried out at different pHs using a poly(sulfone) membrane with molecular weight cut off of 60 kDa under the influence of a 0.4 T neodymium-iron-boron magnetic field. Results showed an increase in the permeate flux of water after the cleaning procedures of the new and reused membranes in the presence of the magnetic field. The elusive mechanism of magnetic memory is also shown to take place for the water fluxes fully recovered after the cleaning procedures when the magnetic field was applied to the system before the permeation. When the magnetic field was applied during permeation, the water fluxes presented lower percent of recuperation after the cleaning procedures, thus suggesting that the BSA solution may have somewhat been influenced by magnetic memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tung KL, Hu CC, Li CH, Chuang CJ (2007) Investigating protein crossflow ultrafiltration mechanisms using interfacial phenomena. J Chinese Inst Chem Eng 38:303–311

    Article  CAS  Google Scholar 

  2. Li Y, Soh SC, Chung T, Chan SY (2009) Exploration of ionic modification in dual-layer hollow fiber membranes for long-term high-performance protein separation. AIChE J 55:321–330

    Article  CAS  Google Scholar 

  3. Saxena A, Tripathi BP, Kumar M, Shahi VK (2009) Membrane-based techniques for the separation and purification of proteins: an overview. Adv Colloid Interface Sci 145:1–22

    Article  CAS  Google Scholar 

  4. Sarkar B, DasGupta S, De S (2009) Electric field enhanced fractionation of protein mixture using ultrafiltration. J Membr Sci 341:11–20

    Article  CAS  Google Scholar 

  5. Ghosh R (2003) Purification of lysozyme by microporous PVDF membrane-based chromatographic process. Biochem Eng J 14:109–116

    Article  CAS  Google Scholar 

  6. Liu J, Lu J, Zhao X, Lu J, Cui Z (2007) Separation of glucose oxidase and catalase using ultrafiltration with 300 kDa polyethersulfone membranes. J Membr Sci 229:222–228

    Article  Google Scholar 

  7. Yunos KFM, Field RW (2008) Rejection amplification in the ultrafiltration of binary protein mixtures using sandwich configurations. Chem Eng Proc 47:1053–1060

    Article  CAS  Google Scholar 

  8. Cheryan M (1998) Ultrafiltration and Microfiltration Handbook. Technomic Publishing Company, Inc., Lancaster

    Google Scholar 

  9. Subramanian G (1998) Bioseparation and bioprocessing. Wiley, New York

    Book  Google Scholar 

  10. Habert AC, Borges CP, Nóbrega R (2006) Processos de Separação por Membranas. E-papers, Rio de Janeiro

    Google Scholar 

  11. Becht NO, Malik DJ, Tarleton ES (2008) Evaluation and comparison of protein ultrafiltration test results: dead-end stirred cell compared with a cross-flow system. Sep Purif Technol 62:228–239

    Article  CAS  Google Scholar 

  12. Williams C, Wakeman R (2000) Membrane fouling and alternative techniques for its alleviation. Membr Technol 124:4–10

    Article  Google Scholar 

  13. Sen D, Roy W, Das L, Sadhu S, Bhattacharjee C (2010) Ultrafiltration of macromolecules using rotating disc membrane module (RDMM) equipped with vanes: effects of turbulence promoter. J Membr Sci 360:40–47

    Article  CAS  Google Scholar 

  14. Baker JS, Judd SJ, Parsons SA (1997) Antiscale magnetic pretreatment of reverse osmosis feedwater. Desalination 110:151–166

    Article  CAS  Google Scholar 

  15. Oshitani J, Yamada D, Miyahara M, Higashitani K (1999) Magnetic effect on ion-exchange kinetics. J Colloid Interface Sci 210:1–7

    Article  CAS  Google Scholar 

  16. Ohata R, Tomita N, Ikada Y (2004) Effect of a static magnetic field on ion transport in a cellulose membrane. J Colloid Interface Sci 270:413–416

    Article  CAS  Google Scholar 

  17. Li X, Liu J, Yang T, Xiao C (2007) Quantitative study of the effect of electromagnetic field on scale deposition on nanofiltration membranes via UTDR. Water Res 41:4595–4610

    Article  CAS  Google Scholar 

  18. Shahryari A, Pakshir M (2008) Influence of a modulated electromagnetic field on fouling in a double-pipe heat exchanger. J Mater Proc Technol 203:389–395

    Article  CAS  Google Scholar 

  19. Gehr R, Zhai ZA, Finch JA, Rao SR (1995) Reduction of soluble mineral concentrations in CaSO4 saturated water using a magnetic field. Water Res 29:933–940

    Article  CAS  Google Scholar 

  20. Fathi A, Mohamed T, Claude G, Maurin G, Mohamed BA (2006) Effect of a magnetic water treatment on homogeneous and heterogeneous precipitation of calcium carbonate. Water Res 40:1941–1950

    Article  CAS  Google Scholar 

  21. Kiselev M, Heinzinger K (1996) Molecular dynamics simulation of a chloride ion in water under the influence of an external electric field. J Chem Phys 105:650–654

    Article  CAS  Google Scholar 

  22. Higashitani K, Kage A, Katamura S, Imai K, Hatade S (1993) Effects of a magnetic field on the formation of CaCO3 particles. J Colloid Interface Sci 156:90–95

    Article  CAS  Google Scholar 

  23. Gryta M (2011) The influence of magnetic water treatment on CaCO3 scale formation in membrane distillation process. Sep Purif Technol 80:293–299

    Article  CAS  Google Scholar 

  24. Chibowski E, Szczes A, Hołysz L (2005) Influence of sodium dodecyl sulfate and static magnetic field on the properties of freshly precipitated calcium carbonate. Langmuir 21:8114–8122

    Article  CAS  Google Scholar 

  25. Parsons SA, Wang BL, Judd SJ, Stephenson T (1997) Magnetic treatment of calcium carbonate scale—effect of pH control. Water Res 31:339–342

    Article  CAS  Google Scholar 

  26. Backer JS, Judd SJ (1996) Magnetic amelioration of scale formation. Water Res 30:247–260

    Article  Google Scholar 

  27. Al-Qahtani H (1996) Effect of magnetic treatment on Gulf seawater. Desalination 107:75–81

    Article  CAS  Google Scholar 

  28. Higashitani K, Okuhara K, Hatade S (1992) Effects of magnetic fields on stability of nonmagnetic ultrafine colloidal particles. J Colloid Interface Sci 152:125–131

    Article  CAS  Google Scholar 

  29. Vallée P, Lafait J, Legrand L, Mentré P, Monod MO, Thomas Y (2005) Effects of pulsed low-frequency electromagnetic fields on water characterized by light scattering techniques: role of bubbles. Langmuir 21:2293–2299

    Article  Google Scholar 

  30. Nakagawa J, Hirota N, Kitazawa K, Shoda M (1999) Magnetic field enhancement of water vaporization. J Appl Phys 86:2923–2925

    Article  CAS  Google Scholar 

  31. Amiri MC, Dadkhah AA (2006) On reduction in the surface tension of water due to magnetic treatment. Colloids Surf A 278:252–255

    Article  CAS  Google Scholar 

  32. Xiao-Feng P, Bo D (2007) Variations of optic properties of water under action of static magnetic field. Chinese Sci Bull 52:3179–3182

    Article  Google Scholar 

  33. Hołysz L, Szczes A, Chibowski E (2007) Effects of a static magnetic field on water and electrolyte solutions. J Colloid Interface Sci 316:996–1002

    Article  Google Scholar 

  34. Xiao-Feng P, Bo D (2008) The changes of macroscopic features and microscopic structures of water under influence of magnetic field. Phys B 403:3571–3577

    Article  Google Scholar 

  35. Xiao-Feng P, Bo D (2008) Investigation of changes in properties of water under the action of a magnetic field. Sci China Ser G: Phys Mech Astron 51:1621–1632

    Article  Google Scholar 

  36. Toledo EJL, Ramalho TC, Magriotis ZM (2008) Influence of magnetic field on physical–chemical properties of the liquid water: insights from experimental and theoretical models. J Mol Struct 888:409–415

    Article  CAS  Google Scholar 

  37. Higashitani K, Oshitani J (1998) Magnetic effects on thickness of adsorbed layer in aqueous solutions evaluated directly by atomic force microscope. J Colloid Interface Sci 204:363–368

    Article  CAS  Google Scholar 

  38. Gabrielli C, Jaouhari R, Maurin G, Keddam M (2001) Magnetic water treatment for scale prevention. Water Res 35:3249–3259

    Article  CAS  Google Scholar 

  39. Madsen HEL (1995) Influence of magnetic field on the precipitation of some inorganic salts. J Cryst Growth 152:94–100

    Article  Google Scholar 

  40. Kobe S, Drazic G, Cefalas AC, Sarantopoulou E, Strazisar J (2002) Nucleation and crystallization of CaCO3 in applied magnetic fields. Cryst Eng 5:243–253

    Article  CAS  Google Scholar 

  41. Chibowski E, Hołysz L, Szczes A (2003) Time dependent changes in zeta potential of freshly precipitated calcium carbonate. Colloids Surf A 222:41–54

    Article  CAS  Google Scholar 

  42. Hołysz L, Chibowski E, Szczes A (2003) Influence of impurity ions and magnetic field on the properties of freshly precipitated calcium carbonate. Water Res 37:3351–3360

    Article  Google Scholar 

  43. Chibowski E, Hołysz L, Szczes A, Chibowski M (2004) Some magnetic field effects on in situ precipitated calcium carbonate. Water Sci Technol 49:169–175

    CAS  Google Scholar 

  44. Madsen HEL (2007) Theory of electrolyte crystallization in magnetic field. J Cryst Growth 305:271–277

    Article  CAS  Google Scholar 

  45. Cefalas AC, Kobe S, Drazic G, Sarantopoulou E, Kollia Z, Strazisar J, Meden A (2008) Nanocrystallization of CaCO3 at solid/liquid interfaces in magnetic field: a quantum approach. Appl Surf Sci 254:6715–6724

    Article  CAS  Google Scholar 

  46. Alimi F, Tlili MM, Ben Amor M, Maurin G, Gabrielli C (2009) Effect of magnetic water treatment on calcium carbonate precipitation: influence of the pipe material. Chem Eng Process 48:1327–1332

    Article  CAS  Google Scholar 

  47. Coey JMD, Cass S (2000) Magnetic water treatment. J Magn Magn Mater 209:71–74

    Article  CAS  Google Scholar 

  48. Del Giudice E, Preparata G, Vitiello G (1998) Water as a free electronic dipole laser. Phys Rev Lett 61:1085–1088

    Article  Google Scholar 

  49. Cefalas AC, Sarantopoulou E, Kollia Z, Riziotis C, Drazic G, Kobe S, Strazisar J, Meden A (2010) Magnetic field trapping in coherent antisymmetric states of liquid water molecular rotors. J Comput Theor Nanosci 7:1800–1805

    Article  CAS  Google Scholar 

  50. Lipus LC, Acko B, Hamler A (2011) Electromagnets for high-flow water processing. Chem Eng Proc 50:952–958

    Article  CAS  Google Scholar 

  51. Colic M, Morse D (1999) The elusive mechanism of the magnetic “memory” of water. Colloids Surf A Physic Eng Asp 154:167–174

    Article  CAS  Google Scholar 

  52. Yavuz CT, Prakash A, Mayo JT, Colvin VL (2009) Magnetic separations: from steel plants to biotechnology. Chem Eng Sci 64:2510–2521

    Article  CAS  Google Scholar 

  53. Ambashta RD, Sillanpaa M (2010) Water purification using magnetic assistance: a review. J Haz Mat 180:38–49

    Article  CAS  Google Scholar 

  54. Funk RHW, Monsees T, Ozkucur N (2009) Electromagnetic effects—from cell biology to medicine. Prog Histochem Cytochem 43:177–264

    Article  Google Scholar 

  55. Szczes A, Chibowski E, Hołysz L, Rafalski P (2011) Effects of static magnetic fields on water kinetic condition. Chem Eng Process 50:124–127

    Article  CAS  Google Scholar 

  56. Kelly ST, Zydney AL (1995) Mechanisms for BSA fouling during microfiltration. J Membr Sci 107:115–124

    Article  CAS  Google Scholar 

  57. Ibáñez R, Almécija MC, Guadix A, Guadix EM (2007) Dynamics of the ceramic ultrafiltration of model proteins with different isoelectric point: comparison of β-lactoglobulin and lysozyme. Sep Purif Technol 57:314–320

    Article  Google Scholar 

  58. Muñoz-Aguado MJ, Wiley DE, Fane AG (1996) Enzymatic and detergent cleaning of a polysulfone ultrafiltration membrane fouled with BSA and whey. J Membr Sci 17:175–187

    Article  Google Scholar 

  59. Huisman IH, Prádanos P, Hernández A (2000) The effect of protein–protein and protein–membrane interactions on membrane fouling in ultrafiltration. J Membr Sci 179:79–90

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank CNPq and URI, Campus de Erechim for financial support and scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Vladimir Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vardanega, R., Tres, M.V., Mazutti, M.A. et al. Effect of magnetic field on the ultrafiltration of bovine serum albumin. Bioprocess Biosyst Eng 36, 1087–1093 (2013). https://doi.org/10.1007/s00449-012-0862-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-012-0862-6

Keywords

Navigation