Skip to main content

Mathematical modelling and process optimization of a continuous 5-stage bioreactor cascade for production of poly[-(R)-3-hydroxybutyrate] by Cupriavidus necator

Abstract

A multistage system for poly(hydroxyalkanoate) (PHA) production consisting of five continuous stirred tank reactors in series (5-CSTR) with Cupriavidus necator DSM 545 as production strain was modelled using formal kinetic relations. Partially growth-associated production of PHA under nitrogen limited growth was chosen as modelling strategy, thus the Luedeking-Piret’s model of partial growth-associated product synthesis was applied as working hypothesis. Specific growth rate relations adjusted for double substrate (C and N source) limited growth according to Megee et al. and Mankad-Bungay relation were tested. The first stage of the reactor cascade was modelled according to the principle of nutrient balanced continuous biomass production system, the second one as two substrate controlled process, while the three subsequent reactors were adjusted to produce PHB under continuous C source fed and nitrogen deficiency. Simulated results of production obtained by the applied mathematical models and computational optimization indicate that PHB productivity of the whole system could be significantly increased (from experimentally achieved 2.14 g L−1 h−1 to simulated 9.95 g L−1 h−1) if certain experimental conditions would have been applied (overall dilution rate, C and N source feed concentration). Additionally, supplemental feeding strategy for switching from batch to continuous mode of cultivation was proposed to avoid substrate inhibition.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Steinbüchel A, Schlegel HG (1991) Physiology and molecular genetics of poly(β-hydroxyalkanoic acid) synthesis in Alcaligenes eutrophus. Mol Microbiol 5:535–542

    Article  Google Scholar 

  2. 2.

    Doi Y, Steinbüchel A (2001) (eds.) Biopolymers, vol. 3b: Polyesters, Wiley-VCH, Weinheim

  3. 3.

    Koller M, Salerno A, Miranda de Sousa Dias M, Reiterer A, Braunegg G (2010) Modern biotechnological polymer synthesis—a review. Food Technol Biotechnol 48(3):255–269

    CAS  Google Scholar 

  4. 4.

    Steinbüchel A, Füchtenbusch B (1998) Bacterial and other biological systems for polyester production. Trends Biotechnol 16:419–427

    Article  Google Scholar 

  5. 5.

    Koller M, Gasser I, Schmid F, Berg G (2011) Linking ecology with economy: insights into polyhydroxyalkanoate-producing microorganisms. Eng Life Sci 11(3):222–237

    Article  CAS  Google Scholar 

  6. 6.

    Lee SY (1996) Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria. Trends Biotechnol 14:431–438

    Article  CAS  Google Scholar 

  7. 7.

    Lee SY (1996) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49:1–14

    Article  CAS  Google Scholar 

  8. 8.

    Braunegg G, Koller M, Varila P, Kutschera CH, Bona R, Hermann C, Horvat P, Neto J, Pereira L (2007) Production of plastics from waste derived from agrofood industry. In: Fornasiero Paolo, Graziani Mauro (eds) Renewable resources and renewable energy. University of Trieste, Trieste, pp 119–135

    Google Scholar 

  9. 9.

    Reddy CSK, Ghai R, Rashmi KVC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–146

    Article  CAS  Google Scholar 

  10. 10.

    Khanna S, Srivastava A (2005) Recent advances in microbial polyhydroxyalkanoates. Process Biochem 40:607–619

    Article  CAS  Google Scholar 

  11. 11.

    Ren Q, Grubelnik A, Hoerler M, Ruth K, Hartmann R, Felber H, Zinn M (2005) Bacterial poly(hydroxyalkanoates) as a source of chiral hydroxyalkanoic acids. Biomacromolecules 6:2290–2298

    Article  CAS  Google Scholar 

  12. 12.

    Chen CQ (2009) A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 38:2434–2446

    Article  CAS  Google Scholar 

  13. 13.

    Akiyama M, Tsuge T, Doi Y (2003) Environmental life cycle comparison of polyhydroxyalkanoates produced from renewable carbon sources by bacterial fermentation. Pol Degrad Stabil 80:183–194

    Article  CAS  Google Scholar 

  14. 14.

    Harding KG, Dennis JS, von Blottnitz H, Harrison STL (2007) Environmental analysis of plastic production processes: comparing petroleum-based polypropylene and polyethylene with biologically-based poly-β-hydroxybutyric acid using life cycle analysis. J Biotechnol 130:57–66

    Article  CAS  Google Scholar 

  15. 15.

    Pietrini M, Roes L, Patel MK, Chiellini E (2007) Comparative life cycle studies on PHB based composites as potential replacement for conventional petrochemical plastics. Biomacromol 8:2210–2218

    Article  CAS  Google Scholar 

  16. 16.

    Titz M, Kettl KH, Shahzad K, Koller M, Schnitzer H, Narodoslawsky M (2012) Process optimization for efficient biomediated PHA production from animal-based waste streams. Clean Technol Environ Policy 14:495–503

    Article  CAS  Google Scholar 

  17. 17.

    Choi J, Lee SY (1999) Factors affecting the economics of polyhydroxyalkanoate production by bacterial fermentation. Appl Microbiol Biotechnol 51:13–21

    Article  CAS  Google Scholar 

  18. 18.

    Sudesh K, Iwata T (2008) Sustainability of biobased and biodegradable plastics. Clean 36:433–442

    CAS  Google Scholar 

  19. 19.

    Koller M, Hesse P, Kutschera C, Bona R, Nascimento J, Ortega S, Agnelli J, Braunegg G (2010) Sustainable Embedding of the Bioplastic Poly-(3-hydroxybutyrate) into Sugarcane Industry: Principles of a Future-Oriented Technology in Brazil.-In: Polymers-Opportunities and Risks, vol. II, pp 81–96

  20. 20.

    Kim BS, Lee SC, Lee SY, Chang HN, Chang JK, Woo SI (1994) Production of poly(3-hydroxybutyric acid) by fed-batch culture of Alcaligenes eutrophus with glucose concentration control. Biotechnol Bioeng 43(9):892–898

    Article  CAS  Google Scholar 

  21. 21.

    Ryu HW, Hahn SK, Chang YK, Chang HN (1997) Production of poly(3-hydroxybutyrate) by high cell density fed-batch culture of Alcaligenes eutrophus with phosphate limitation. Biotech Bioeng 55:28–32

    Article  CAS  Google Scholar 

  22. 22.

    Ahn WS, Park SJ, Lee SY (2000) Production of poly(3-hydroxybutyrate) by fed-batch culture of recombinant Escherichia coli with a highly concentrated whey solution. Appl Environ Microbiol 66:3624–3627

    Article  CAS  Google Scholar 

  23. 23.

    Nonato RV, Mantelatto PE, Rossell CE (2001) Integrated production of biodegradable plastic, sugar and ethanol. Appl Microbiol Biotechnol 57:1–5

    Article  CAS  Google Scholar 

  24. 24.

    Koller M, Bona R, Braunegg G, Hermann C, Horvat P, Kroutil M, Martinz J, Neto J, Varila P, Pereira L (2005) Production of polyhydroxyalkanoates from agricultural waste and surplus materials. Biomacromolecules 6:561–565

    Article  CAS  Google Scholar 

  25. 25.

    Zinn M, Weilenmann H-U, Hany R, Schmid M, Egli T (2003) Tailored synthesis of poly([R]-3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/HV) in Ralstonia eutropha DSM 428. Acta Biotechnol 23:309–316

    Article  CAS  Google Scholar 

  26. 26.

    Sun Z, Ramsay JA, Guay M, Ramsay BA (2007) Fermentation process development for the production of medium-chain-length poly-3-hydroxyalkanoates. Appl Microbiol Biotechnol 75:475–485

    Article  CAS  Google Scholar 

  27. 27.

    Wilkinson JF, Munro ALS (1967) Influence of growth-limiting conditions on the synthesis of possible carbon and energy storage polymers in Bacillus megaterium. In: Powell EO, Evans CGT, Strange RE, Tempest DW (eds) Microbial physiology and continuous culture. HMSO, London, pp 173–185

    Google Scholar 

  28. 28.

    Ramsay BA, Lomaliza K, Chavarie C, Dubé B, Bataille P, Ramsay JA (1990) Production of poly-(β-hydroxybutyric-co-β-hydroxyvaleric) acids. Appl Environ Microbiol 56:2093–2098

    CAS  Google Scholar 

  29. 29.

    Koyama N, Doi Y (1995) Continuous production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Alcaligenes eutrophus. Biotechnol Lett 17:281–284

    Article  CAS  Google Scholar 

  30. 30.

    Ackermann JU, Babel W (1998) Approaches to increase the economy of the PHB production. Polymer Degrad Stab 59:183–186

    Article  CAS  Google Scholar 

  31. 31.

    Babel W, Ackermann JU, Breuer U (2001) Physiology, regulation, and limits of the synthesis of poly(3HB). In: Babel W, Steinbüchel A (eds.) Advances in Biochemical Engineering/Biotechnology, vol. 71 (Biopolyesters) pp. 125–157

  32. 32.

    Yu ST, Lin CC, Too JR (2005) PHBV production by Ralstonia eutropha in a continuous stirred tank reactor. Process Biochem 40:2729–2734

    Article  CAS  Google Scholar 

  33. 33.

    Du G, Chen J, Yu J, Lun S (2001) Continuous production of poly-3-hydroxybutyrate by Ralstonia eutropha in a two-stage culture system. J Biotechnol 88:59–65

    Article  CAS  Google Scholar 

  34. 34.

    Du G, Chen J, Yu J, Lun S (2001) Kinetic studies on poly-3-hydroxybutyrate formation by Ralstonia eutropha in a two-stage continuous culture system. Process Biochem 37:219–227

    Article  CAS  Google Scholar 

  35. 35.

    Jung K, Hazenberg W, Prieto M, Witholt B (2001) Two-stage continuous process for the production of medium-chain-length poly(3-hydroxyalkanoates). Biotechnol Bioeng 72:19–24

    Article  CAS  Google Scholar 

  36. 36.

    Mothes G, Ackermann JU (2005) Synthesis of poly(3-hydroxybutyrateco-4-hydroxybutyrate) with a target mole fraction of 4-hydroxybutyric acid units by two-stage continuous cultivation of Delftia acidovorans P4a. Eng Life Sci 5:58–62

    Article  CAS  Google Scholar 

  37. 37.

    Khanna S, Srivastava A (2008) Contiuous production of poly-β-hydroxybutyrate by high–cell–density cultivation of Wautersia eutropha. J Chem Technol Biotechnol 83:799–805

    Article  CAS  Google Scholar 

  38. 38.

    Zinn M, Witholt B, Egli T (2004) Dual nutrient limited growth: models, experimental observations, and applications. J Biotechnol 113:263–279

    Article  CAS  Google Scholar 

  39. 39.

    Egli T, Quayle JR (1986) Influence of the carbon: nitrogen ratio of the growth medium on the cellular composition and ability of the methylotrophic yeast Hansenula polymorpha to utilize mixed carbon sources. J Gen Microbiol 132:1779–1788

    CAS  Google Scholar 

  40. 40.

    Egli T (1991) On multiple-nutrient-limited growth of microorganisms, with special reference to dual limitation by carbon and nitrogen substrates. Antonie Van Leeuwenhoek 60:225–234

    Article  CAS  Google Scholar 

  41. 41.

    El-Sayed AA, Abdel Hafez AM, Abdelhady M, Khodair TA (2009) Poduction of polyhydroxybutyrate (PHB) Using Batch and Two-stage Batch Culture Strategies. Aust J Basic Appl Sci 3(2):617–627

    CAS  Google Scholar 

  42. 42.

    Chakraborty P, Gibbons W, Muthukumarappan K (2005) Conversion of volatile fatty acids into polyhydroxyalkanoate by Ralstonia eutropha. Appl Microbiol 106:1996–2005

    Google Scholar 

  43. 43.

    Wu ST, Lin YC, Too JR (2009) Continuous production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate): effects of C/N ratio and dilution rate on HB/HV ratio. Korean J Chem Eng 26(2):411–416

    Article  CAS  Google Scholar 

  44. 44.

    Braunegg G, Genser K, Bona R, Haage G, Schellauf F, Winkler E (1999) Production of PHAs from agricultural waste material. Macromol Symp 144:375–383

    Article  CAS  Google Scholar 

  45. 45.

    Braunegg G, Lefebvre G, Renner G, Zeiser A, Haage G, Loidl-Lanthaler K (1995) Kinetics as a tool for polyhydroxyalkanoate production optimization. Can J Microbiol 41:239–248

    Article  CAS  Google Scholar 

  46. 46.

    Hartmann R, Hany R, Pletscher E, Ritter A, Witholt B, Zinn M (2001) Tailor-made olefinic medium-chain-length poly-[(R)-3-hydroxyalkanoates] by Pseudomonas putida GPo1: batch versus chemostat production. Biotechnol Bioeng 93:737–746

    Article  Google Scholar 

  47. 47.

    Hartmann R, Hany R, Geiger T, Egli T, Witholt B, Zinn M (2004) Tailored biosynthesis of olefinic medium-chain-lengthpoly[(R)-3-hydroxyalkanoates] in Pseudomonas putida GPo1with improved thermal properties. Macromolecules 37:6780–6785

    Article  CAS  Google Scholar 

  48. 48.

    Pederson EN, McChalicher CWJ, Srienc F (2006) Bacterial Synthesis of PHA Block Copolymers. Biomacromol 7(6):1904–1911

    Article  CAS  Google Scholar 

  49. 49.

    Page WJ, Knosp O (1989) Hyperproduction of Poly-hydroxybutyrate during exponential growth of Azotobacter vinelandii UWD. Appl Environ Microbiol 55:1334–1339

    CAS  Google Scholar 

  50. 50.

    Atlić A, Koller M, Scherzer D, Kutschera C, Grillo-Fernandes E, Horvat P, Chiellini E, Braunegg G (2011) Continuous production of poly([R]-3-hydroxybutyrate) by Cupriavidus necator in a multistage bioreactor cascade. Appl Microbiol Biotechnol 91:295–304

    Article  Google Scholar 

  51. 51.

    Moser A (1988) Bioprocess technology: kinetics and reactors. Springer, New York

    Book  Google Scholar 

  52. 52.

    Luedeking R, Piret EL (1959) A kinetic study of the lactic acid fermentation: batch process at controlled pH. J Biochem Microbiol Technol Eng 4:231–241

    Google Scholar 

  53. 53.

    Megee RD, Drake JF, Fredrickson AG, Tsuchiya HM (1972) Studies in intermicrobial symbiosis Saccharomyces cerevisiae and Lactobacillus casei. Can J Microbiol 1818:1733–1742

    Article  Google Scholar 

  54. 54.

    Mankad T, Bungay HR (1988) Model for microbial growth with more than one imiting nutrient. J Biotechnol 7:161–166

    Article  CAS  Google Scholar 

  55. 55.

    Koller M, Horvat P, Hesse P, Bona R, Kutschera C, Atlić A, Braunegg G (2006) Assesment of formal and low structured kinetic modeling of polyhydroxyalkanoate synthesis from complex substrates. Biopr Biosyst Eng 29:367–377

    Article  CAS  Google Scholar 

  56. 56.

    Atlić A (2009) Continuous production of polyhydroxyalkanoates in five-stage bioreactor cascade”. Doctoral thesis for the obtainment of the degree “Doktor der technischen Wissenschaften” attained at Graz University of Technology, Austria, 2009

  57. 57.

    Oosterhuis NMG, Kossen NWF (1985) Modelling and scaling-up of bioreactors. In: Brauer H (ed) Fundamentals of biochemical engineering, biotechnology, vol 2. Deerfield Beach FL VCH, Weinheim, pp 571–605

    Google Scholar 

  58. 58.

    Mayr B, Horvat P, Moser A (1992) Engineering approach to mixing quantification in bioreactors. Bioprocess Eng 8:137–143

    Article  CAS  Google Scholar 

  59. 59.

    Mayr B, Horvat P, Nagy E, Moser A (1994) Scale-up on Basis of structured Mixing Models: a new Concept. Biotechnol Bioeng 43:195–206

    Article  CAS  Google Scholar 

  60. 60.

    Baei MS, Najafpour GD, Younesi H, Tabandeh F, Issazadeh H, Khodabandeh M (2011) Growth kinetic parameters and biosynthesis of polyhydroxy-butyrate in Cupriavidus necator DSMZ 545 on selected substrate. CI&CEQ 17(1):1–8

    Article  CAS  Google Scholar 

  61. 61.

    Gostomski PA, Bungay HR (1996) Effect of glucose and NH4 + levels on Poly(β-hydroxybutyrate) production and growth in a continuous culture of Alcaligenes eutrophus. Biotechnol Prog 12:234–239

    Article  CAS  Google Scholar 

  62. 62.

    Shahhosseini S (2004) Simulation and optimisation of PHB production in fed-batch culture of Ralstonia eutropha. Process Biochem 39:963–969

    Article  CAS  Google Scholar 

  63. 63.

    Raje P, Srivastava AK (1998) Update mathematical model and fed-batch strategies for poly-β-hydroxybutyrate (PHB) production by Alcaligenes eutrophus. Bioresour Technol 64:185–192

    Article  CAS  Google Scholar 

  64. 64.

    Mulchandani A, Luong JHT, Groom C (1989) Substrate inhibition kinetics for microbial growth and synthesis of poly-β-hydroxybutyric acid by Alcaligenes eutrophus ATCC 17697. Appl Microbiol Biotechnol 30:11–17

    Article  CAS  Google Scholar 

  65. 65.

    Heinzle E, Lafferty RM (1980) A kinetic model of growth and synthesis of poly-β-hydroxybutyric acid (PHB) in Alcaligenes eutrophus H16. European J Microbiol Biotechnol 11:8–16

    Article  CAS  Google Scholar 

  66. 66.

    Luong JHT (1985) Kinetics of ethanol inhibition in alcohol fermentation. Biotechnol Bioeng 27:280–285

    Article  CAS  Google Scholar 

  67. 67.

    Luong JHT (1987) Generalization of Monod kinetics for analysis of growth data with substrate inhibition. Biotechnol Bioeng 29:242–248

    Article  CAS  Google Scholar 

  68. 68.

    Park JM, Kim TY, Lee SY (2011) Genome-scale reconstruction and in silico analysis of the Ralstonia eutropha H16 for polyhydroxyalkanoate synthesis, lithoautotrophic growth, and 2-methyl citric acid production. BMC Syst Biol 5:101

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Collaborative EU FP7 project ANIMPOL (Biotechnological conversion of carbon containing wastes for eco-efficient production of high added value products; Grant agreement no.: 245084).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Predrag Horvat.

Electronic supplementary material

Below is the link to the electronic supplementary material.

449_2012_852_MOESM1_ESM.tif

Online Resource 1: Simulated and experimental results of FM1 when Mankad-Bungay spec. growth rate relation was applied; (P, PHB concentration; CDM, cell dry matter; S, glucose concentration) (TIFF 216 kb)

449_2012_852_MOESM2_ESM.tif

Online Resource 2: Simulated and experimental results of FM2 when Mankad-Bungay spec. growth rate relation was applied; (P, PHB concentration; CDM, cell dry matter; S, glucose concentration) (TIFF 222 kb)

449_2012_852_MOESM3_ESM.tif

Online Resource 3: Simulated and experimental results of FM3 when Mankad-Bungay spec. growth rate relation was applied; (P, PHB concentration; CDM, cell dry matter; S, glucose concentration) (TIFF 211 kb)

449_2012_852_MOESM4_ESM.tif

Online Resource 4: Specific non growth associated PHB production rate inhibition by nitrogen source concentration and biomass productivity in dependence on inflow rate (TIFF 102 kb)

449_2012_852_MOESM5_ESM.tif

Online Resource 5: Optimized 5-stage cultivation when Mankad-Bungay spec. growth rate relation was applied; (P, PHB concentration; CDM, cell dry matter; S, glucose concentration) (TIFF 181 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Horvat, P., Vrana Špoljarić, I., Lopar, M. et al. Mathematical modelling and process optimization of a continuous 5-stage bioreactor cascade for production of poly[-(R)-3-hydroxybutyrate] by Cupriavidus necator . Bioprocess Biosyst Eng 36, 1235–1250 (2013). https://doi.org/10.1007/s00449-012-0852-8

Download citation

Keywords

  • Continuous production
  • Cupriavidus necator
  • Mathematical modelling
  • Multistage fermentation
  • Poly (3-hydroxybutyrate)