Skip to main content
Log in

Sperm cells manipulation employing dielectrophoresis

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Infertility studies are an important growing field, where new methods for the manipulation, enrichment and selection of sperm cells are required. Microfluidic techniques offer attractive advantages such as requirement of low sample volume and short processing times in the range of second or minutes. Presented here is the application of insulator-based dielectrophoresis (iDEP) for the enrichment and separation of mature and spermatogenic cells by employing a microchannel with cylindrical insulating structures with DC electric potentials in the range of 200–1500 V. The results demonstrated that iDEP has the potential to concentrate sperm cells and distinguish between mature and spermatogenic cells by exploiting the differences in shape which lead to differences in electric polarization. Viability assessments revealed that a significant percentage of the cells are viable after the dielectrophoretic treatment, opening the possibility for iDEP to be developed as a tool in infertility studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gur Y, Breitbart H (2006) Mammalian sperm translate nuclear-encoded proteins by mitochondrial-type ribosomes. Genes Dev 20(4):411–416

    Article  CAS  Google Scholar 

  2. Hsu S-H, Hsieh-Li H-M, Li H (2004) Dysfunctional spermatogenesis in transgenic mice overexpressing bHLH-Zip transcription factor, Spz1. Exp Cell Res 294(1):185–198

    Article  CAS  Google Scholar 

  3. Cui W (2010) Mother or nothing: the agony of infertility. WHO Bull 88(12):881–882

    Google Scholar 

  4. Romrell LJ, Bellvé AR, Fawcett DW (1976) Separation of mouse spermatogenic cells by sedimentation velocity: a morphological characterization. Dev Biol 49:119–131

    Article  CAS  Google Scholar 

  5. Voldman J (2006) Electrical forces for microscale cell manipulation. Ann Rev Biomed Eng 8:425–454

    Article  CAS  Google Scholar 

  6. Prince M, Ma X, Docker P, Ward M, Prewett P (2007) The development of a novel Bio-MEMS filtration chip for the separation of specific cells in fluid suspension. Proc Inst Mech Eng [H] 221(2):113–128

    Article  CAS  Google Scholar 

  7. D-b Seo, Agca Y, Feng Z, Critser J (2007) Development of sorting, aligning, and orienting motile sperm using microfluidic device operated by hydrostatic pressure. Microfluid Nanofluid 3(5):561–570

    Article  Google Scholar 

  8. Lopez-Garcia M, Monson R, Haubert K, Wheeler M, Beebe D (2008) Sperm motion in a microfluidic fertilization device. Biomed Microdev 10(5):709–718

    Article  CAS  Google Scholar 

  9. Chen Y-A, Huang Z-W, Tsai F-S, Chen C-Y, Lin C-M, Wo A (2011) Analysis of sperm concentration and motility in a microfluidic device. Microfluid Nanofluid 10(1):59–67

    Article  Google Scholar 

  10. Smith GD, Takayama S (2007) Gamete and embryo isolation and culture with microfluidics. Theriogenology 68:s190–s195

    Article  Google Scholar 

  11. Lapizco-Encinas BH, Simmons BA, Cummings EB, Fintschenko Y (2004) Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators. Anal Chem 76(6):1571–1579

    Article  CAS  Google Scholar 

  12. Lapizco-Encinas BH, Rito-Palomares M (2007) Dielectrophoresis for the manipulation of nanobioparticles. Electrophoresis 28(24):4521–4538

    Article  CAS  Google Scholar 

  13. Gagnon ZR (2011) Cellular dielectrophoresis: applications to the characterization, manipulation, separation and patterning of cells. Electrophoresis 32(18):2466–2487

    Article  CAS  Google Scholar 

  14. Fuhr G, Muller T, Baukloh V, Lucas K (1998) High-frequency electric field trapping of individual human spermatozoa. Hum Reprod 13(1):136–141

    Article  CAS  Google Scholar 

  15. Buoncristiani MR, Timken MD (2009) In: U.S. Department of Justice, p 50

  16. Ohta AT, Garcia M, Valley JK, Banie L, Hsu H-Y, Jamshidi A, Neale SL, Lue T, Wu MC (2010) Motile and non-motile sperm diagnostic manipulation using optoelectronic tweezers. Lab Chip 10(23):3213–3217

    Article  CAS  Google Scholar 

  17. Garcia MM, Ohta AT, Walsh TJ, Vittinghof E, Lin GT, Wu MC, Lue TF (2010) A noninvasive, motility independent, sperm sorting method and technology to identify and retrieve individual viable nonmotile sperm for intracytoplasmic sperm injection. J Urol 184(6):2466–2472

    Article  Google Scholar 

  18. Valley JK, Swinton P, Boscardin WJ, Lue TF, Rinaudo PF, Wu MC, Garcia MM (2010) Preimplantation mouse embryo selection guided by light-induced dielectrophoresis. PLoS ONE 5(4):e10160

    Article  Google Scholar 

  19. Jones TB (2003) Basic theory of dielectrophoresis and electrorotation. IEEE Eng Med Biol Mag 22(6):33–42

    Article  Google Scholar 

  20. Srivastava S, Gencoglu A, Minerick A (2010) DC insulator dielectrophoretic applications in microdevice technology: a review. Anal Bional Chem 399(1):301–321

    Article  Google Scholar 

  21. Moncada-Hernández H, Lapizco-Encinas BH (2010) Simultaneous concentration and separation of microorganisms: insulator-based dielectrophoretic approach. Anal Bional Chem 396(5):1805–1816

    Article  Google Scholar 

  22. Gallo-Villanueva RC, Jesús-Pérez NM, Martínez-López JI, Pacheco A, Lapizco-Encinas BH (2011) Assessment of microalgae viability employing insulator-based dielectrophoresis. Microfluid Nanofluid 10(6):1305–1315

    Article  CAS  Google Scholar 

  23. Pohl HA (1951) The motion and precipitation of suspensoids in divergent electric fields. J Appl Phys 22(7):869–871

    Article  CAS  Google Scholar 

  24. Markx GH, Dyda PA, Pethig R (1996) Dielectrophoretic separation of bacteria using a conductivity gradient. J Biotechnol 51(2):175–180

    Article  CAS  Google Scholar 

  25. Kwon J-S, Maeng J-S, Chun M-S, Song S (2008) Improvement of microchannel geometry subject to electrokinesis and dielectrophoresis using numerical simulations. Microfluid Nanofluid 5(1):23–31

    Article  CAS  Google Scholar 

  26. Davalos RV, McGraw GJ, Wallow TI, Morales AM, Krafcik KL, Cummings EB, Simmons BA (2008) Performance impact of dynamic surface coatings on polymeric insulator-based dielectrophoretic particle separators. Anal Bional Chem 390(3):847–855

    Article  CAS  Google Scholar 

  27. Martínez-López JI, Moncada-Hernández H, Baylon-Cardiel JL, Martínez-Chapa SO, Rito-Palomares M, Lapizco-Encinas BH (2009) Characterization of electrokinetic mobility of microparticles in order to improve dielectrophoretic concentration. Anal Bional Chem 394(1):293–302

    Article  Google Scholar 

  28. Baylon-Cardiel JL, Lapizco-Encinas BH, Reyes-Betanzo C, Chávez-Santoscoy AV, Martínez Chapa SO (2009) Prediction of trapping zones in an insulator-based dielectrophoretic device. Lab Chip 9(20):2896–2901

    Article  CAS  Google Scholar 

  29. Jones TB (1995) Electromechanics of particles. Cambridge University Press, USA

    Book  Google Scholar 

  30. Yang CY, Lei U (2007) Quasistatic force and torque on ellipsoidal particles under generalized dielectrophoresis. J Appl Phys 102(9):094702–094711

    Article  Google Scholar 

  31. Hughes MP (2002) Nanoelectromechanics in engineering and biology. CRC Press, Boca Raton, FL

    Book  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support provided by CINVESTAV-Monterrey. The authors would like to thank MSc. Hector Moncada-Hernández for support with COMSOL simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blanca H. Lapizco-Encinas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosales-Cruzaley, E., Cota-Elizondo, P.A., Sánchez, D. et al. Sperm cells manipulation employing dielectrophoresis. Bioprocess Biosyst Eng 36, 1353–1362 (2013). https://doi.org/10.1007/s00449-012-0838-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-012-0838-6

Keywords

Navigation