Skip to main content

Advertisement

Log in

Pullulan fermentation using a prototype rotational reciprocating plate impeller

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A rotational reciprocating plate impeller prototype, designed to improve the mixing homogeneity of viscous non-Newtonian fermentation broth, has been tested in pullulan fermentations. With this new impeller, the operating levels of several factors were investigated to improve pullulan production with Aureobasidium pullulans ATCC 42023 in a 22-L bioreactor using experimental designs. Because both high molecular weight (MW) and high concentration of pullulan were desired; the exopolysaccharide (EPS) concentration and the broth viscosity were used as optimization objective functions to be maximized. A 6-run uniform design was used to investigate five factors. Under the best operating conditions among the six runs, 29.0 g L−1 EPS was produced at 102 h. This condition was used as the starting point for further investigation on the two statistically significant factors, the pH and the agitation speed. An 8-run 3-level custom design that investigates up to second-order effects was used in the second stage. An optimal zone of operating conditions for large quantity of high MW pullulan production was identified. A concentration of 23.3 g L−1 EPS was produced at 78 h. This is equivalent to an EPS productivity of 0.30 g L−1 h−1. The corresponding apparent viscosity of the broth was 0.38 Pa s at the shear rate of 10 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Catley BJ, Whelan WJ (1971) Observations on structure of pullulan. Arch Biochem Biophys 143(1):138–142

    Article  CAS  Google Scholar 

  2. LeDuy A, Choplin L, Zajic JE, Loung JHT (1988) Pullulan. In: Mark HF, Bikales NM, Overberger CG, Menges G, Kroschwitz JI (eds) Encyclopedia of polymer science and engineering, vol 13. Wiley, New York, pp 650–660

    Google Scholar 

  3. Singh RS, Saini GK, Kennedy JF (2008) Pullulan: microbial sources, production and applications. Carbohydr Polym 73(4):515–531

    Article  CAS  Google Scholar 

  4. Leathers TD (2003) Biotechnological production and applications of pullulan. Appl Microb Biotechnol 62(5–6):468–473

    Article  CAS  Google Scholar 

  5. Yuen S (1974) Pullulan and its applications. Process Biochem 9(9), 7–9, 22

    Google Scholar 

  6. Cheng KC, Demirci A, Catchmark JM (2011) Pullulan: biosynthesis, production, and applications. Appl Microb Biotechnol 92:29–44

    Article  CAS  Google Scholar 

  7. Leduy A, Marsan AA, Coupal B (1974) Study of rheological properties of a non-newtonian fermentation broth. Biotechnol Bioeng 16(1):61–76

    Article  CAS  Google Scholar 

  8. Lin Y, Thibault J, LeDuy A (2010) Pullulan, microbial production methods. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology. Wiley, New York

    Google Scholar 

  9. Sugimoto K (1978) Pullulan: production and applications. Ferment Ind 36(2):98–108

    CAS  Google Scholar 

  10. Lounes M, Audet J, Thibault J, Leduy A (1995) Description and evaluation of reciprocating plate bioreactors. Bioprocess Eng 13(1):1–11

    Article  CAS  Google Scholar 

  11. Audet J, Lounes M, Thibault J (1996) Pullulan fermentation in a reciprocating plate bioreactor. Bioprocess Eng 15(4):209–214

    Article  CAS  Google Scholar 

  12. Audet J, Gagnon H, Lounes M, Thibault J (1998) Polysaccharide production: experimental comparison of the performance of four mixing devices. Bioprocess Eng 19(1):45–52

    Article  CAS  Google Scholar 

  13. Gaidhani HK, McNeil B, Ni XW (2003) Production of pullulan using an oscillatory baffled bioreactor. J Chem Technol Biotechnol 78(2–3):260–264

    Article  CAS  Google Scholar 

  14. Gaidhani HK, McNeil B, Ni X (2005) Fermentation of pullulan using an oscillatory baffled fermenter. Chem Eng Res Des 83(A6):640–645

    Article  CAS  Google Scholar 

  15. Lin Y, Zhang ZS, Thibault J (2011) New impeller for viscous fermentation: power input and mass transfer coefficient correlations. Ind Eng Chem Res 50:3510–3516

    Article  CAS  Google Scholar 

  16. Gibson LH, Coughlin RW (2002) Optimization of high molecular weight pullulan production by Aureobasidium pullulans in batch fermentations. Biotechnol Prog 18(3):675–678

    Article  CAS  Google Scholar 

  17. Goksungur Y, Ucan A, Guvenc U (2004) Production of pullulan from beet molasses and synthetic medium by Aureobasidium pullulans. Turkish J Biol 28(1):23–30

    CAS  Google Scholar 

  18. Gibbs PA, Seviour RJ (1996) Does the agitation rate and/or oxygen saturation influence exopolysaccharide production by Aureobasidium pullulans in batch culture? Appl Microb Biotechnol 46(5–6):503–510

    Article  CAS  Google Scholar 

  19. Goksungur Y, Dagbagli S, Ucan A, Guvenc U (2005) Optimization of pullulan production from synthetic medium by Aureobsidium pullulans in a stirred tank reactor by response surface methodology. J Chem Technol Biotechnol 80(7):819–827

    Article  Google Scholar 

  20. Singh RS, Singh H, Saini GK (2009) Response surface optimization of the critical medium components for pullulan production by Aureobasidium pullulans FB-1. Appl Biochem Biotechnol 152(1):42–53

    Article  CAS  Google Scholar 

  21. Cheng KC, Demirci A, Catchmark JM (2010) Enhanced pullulan production in a biofilm reactor by using response surface methodology. J Ind Microbiol Biotechnol 37:587–594

    Article  CAS  Google Scholar 

  22. Fang KT (1980) The uniform design: application of number-theoretic methods in experimental design. Acta Math Appl Sin 3:363–372

    Google Scholar 

  23. Wang Y, Fang KT (1981) A note on uniform distribution and experimental design. Kexue TongBao (Chin Sci Bull) 26:485–489

    Google Scholar 

  24. Sall J, Lehman A, Creighton L (2001) JMP start statistics. Duxbury, Pacific Grove, CA, USA

  25. Lin Y, Zhang ZS, Thibault J (2009) Comparison of experimental designs using neural networks. Can J Chem Eng 87(6):965–971

    Article  CAS  Google Scholar 

  26. Lin Y, Zhang ZS, Thibault J (2007) Aureobasidium pullulans batch cultivations based on a factorial design for improving the production and molecular weight of exopolysaccharides. Process Biochem 42(5):820–827

    Article  CAS  Google Scholar 

  27. Lacroix C, Leduy A, Noel G, Choplin L (1985) Effect of pH on the batch fermentation of pullulan from sucrose medium. Biotechnol Bioeng 27(2):202–207

    Article  CAS  Google Scholar 

  28. Madi NS, McNeil B, Harvey LM (1996) Influence of culture pH and aeration on ethanol production and pullulan molecular weight by Aureobasidium pullulans. J Chem Technol Biotechnol 65(4):343–350

    Article  Google Scholar 

  29. Chi ZM, Zhao SZ (2003) Optimization of medium and cultivation conditions for pullulan production by a new pullulan-producing yeast strain. Enzyme Microbial Technol 33(2–3):206–211

    Article  CAS  Google Scholar 

  30. Youssef F, Roukas T, Biliaderis CG (1999) Pullulan production by a non-pigmented strain of Aureobasidium pullulans using batch and fed-batch culture. Process Biochem 34(4):355–366

    Article  CAS  Google Scholar 

  31. Tarabasz-Szymanska L, Galas E, Pankiewicz T (1999) Optimization of productivity of pulluan by means of multivariable linear regression analysis. Enzyme Microb Technol 24:276–282

    Article  CAS  Google Scholar 

  32. Lazaridou A, Biliaderis CG, Roukas T, Izydorczyk M (2002) Production and characterization of pullulan from beet molasses using a nonpigmented strain of Aureobasidium pullulans in batch culture. Appl Biochem Biotechnol 97:1–22

    Article  CAS  Google Scholar 

  33. Shabtai Y, Mukmenev I (1995) Enhanced production of pigment-free pullulan by a morphogenetically arrested Aureobasidium pullulans (ATCC 42023) in a two-stage fermentation with shift from soy bean oil to sucrose. Appl Microbiol Biotechnol 43:595–603

    Article  CAS  Google Scholar 

  34. Kim JH, Kim MR, Lee JH, Lee JW, Kim SK (2000) Production of high molecular weight pullulan by Aureobasidium pullulans using glucosamine. Biotechnol Lett 22:987–990

    Article  CAS  Google Scholar 

  35. Lee JH, Kim JH, Zhu IH, Zhan XB, Lee JW, Shin DH, Kim SK (2001) Optimization of conditions for the production of pullulan and high molecular weight pullulan by Aureobasidium pullulans. Biotechnol Lett 23:817–820

    Article  CAS  Google Scholar 

  36. Moscovici M, Ionescu C, Oniscu C, Fotea O, Protopopescu P, Hanganu LD (1996) Improved exopolysaccharide production in fed-batch fermentation of Aureobasidium pullulans, with increased impeller speed. Biotechnol Lett 18(7):787–790

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jules Thibault.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Y., Thibault, J. Pullulan fermentation using a prototype rotational reciprocating plate impeller. Bioprocess Biosyst Eng 36, 603–611 (2013). https://doi.org/10.1007/s00449-012-0816-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-012-0816-z

Keywords