Skip to main content
Log in

A novel and highly sensitive acetyl-cholinesterase biosensor modified with hollow gold nanospheres

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In this work, a highly sensitive acetylcholinesterase (AChE) inhibition-based amperometric biosensor has been developed. Firstly, a glassy carbon electrode (GCE) was modified with chitosan (Chits). Then, hollow gold nanospheres (HGNs) were absorbed onto the surface of chitosan based on the strong affinity through electrostatic adsorption. After that, l-cysteine (l-cys) was assembled on HGNs through Au–S bond. The hollow gold nanospheres were prepared by using Co nanoparticles as sacrificial templates and characterized by scanning electron microscopy, transmission electron microscopy and ultraviolet spectra, respectively. Finally, AChE was immobilized with covalent binding via –COOH groups of l-cysteine onto the modified GCE. The AChE biosensor fabrication process was characterized by cyclic voltammetry and electrochemical impedance spectroscopy methods with the use of ferricyanide as an electrochemical redox indicator. Under optimum conditions, the inhibition rates of pesticides were proportional to their concentrations in the range of 0.1–150 and 0.1–200 μg L−1 for chlorpyrifos and carbofuran, respectively, the detection limits were 0.06 μg L−1 for chlorpyrifos and 0.08 μg L−1 for carbofuran. Moreover, the biosensor exhibited a good stability and reproducibility and was suitable for trace detection of pesticide residues in vegetables and fruits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Arduini F, Ricci F, Tuta CS, Moscone D, Amine A, Palleschi G (2006) Detection of carbamic and organophosphorous pesticides in water samples using a cholinesterase biosensor based on Prussian Blue-modified screen-printed electrode. Anal Chim Acta 580(2):155–162

    Article  CAS  Google Scholar 

  2. Wang K, Liu Q, Dai L, Yan JJ, Ju C, Qiu BJ, Wu XY (2011) A highly sensitive and rapid organophosphate biosensor based on enhancement of CdS-decorated graphene nanocomposite. Anal Chim Acta 695(1–2):84–88

    Article  CAS  Google Scholar 

  3. Corcia AD, Marchetti M (1991) Multiresidue method for pesticides in drinking water using a graphitized carbon black cartridge extraction and liquid chromatographic analysis. Anal Chem 63(6):580–585

    Article  Google Scholar 

  4. Ballesteros E, Parrado MJ (2004) Continuous solid-phase extraction and gas chromatographic determination of organophosphorus pesticides in natural and drinking waters. J Chromatogr A 1029(1–2):267–273

    CAS  Google Scholar 

  5. Mohan C, Kumar Y, Madan J, Saxena N (2010) Multiresidue analysis of neonicotinoids by solid-phase extraction technique using high-performance liquid chromatography. Environ Monit Assess 165(1–4):573–576

    Article  CAS  Google Scholar 

  6. Chauhan N, Narang J, Pundir CS (2011) Immobilization of rat brain acetylcholinesterase on porous gold-nanoparticle-CaCO3 hybrid material modified Au electrode for detection of organophosphorous insecticides. Int J Biol Macromol 49(5):923–929

    Article  CAS  Google Scholar 

  7. Tan F, Wang L, Wang J, Wu X, Zhu H, Jiang L, Tao S, Zhao K, Yang Y, Tang X (2011) Enhanced pesticide sensitivity of novel housefly actylcholinesterases: a new tool for the detection of residual pesticide contamination. Bioprocess Biosyst Eng 34(3):305–314

    Article  CAS  Google Scholar 

  8. Rogers KR, Gerlach C (1996) Environmental biosensor, a status report. Environ Sci Technol 30(11):486A–491A

    Article  CAS  Google Scholar 

  9. Du D, Ding JW, Cai J, Zhang JM, Liu L (2008) In situ electrodeposited nanoparticles for facilitating electron transfer across self-assembled monolayers in biosensor design. Talanta 74(5):1337–1343

    Article  CAS  Google Scholar 

  10. Kang TF, Liu R, Lu LP, Cheng SY (2006) Based on Acetylcholinesterase Immobilized on Regenerated Silk Fibroin. Chinese journal of applied chemistry 23(10):1103–1199

    Google Scholar 

  11. Gong JM, Wang LY, Zhang LZ (2009) Electrochemical biosensing of methyl parathion pesticide based on acetylcholinesterase immobilized onto Au-polypyrrole interlaced network-like nanocomposite. Biosens Bioelectron 24(7):2285–2288

    Article  CAS  Google Scholar 

  12. Arduini F, Amine A, Moscone D, Palleschi G (2010) Biosensors based on cholinesterase inhibition for insecticides, nerve agents and aflatoxin B1 detection. Microchim Acta 170(3–4):193–214

    CAS  Google Scholar 

  13. Chauhan N, Narang J, Pundir CS (2011) Immobilization of rat brain acetylcholinesterase on ZnS and poly(indole-5-carboxylic acid) modified Au electrode for detection of organophosphorus insecticides. Biosens Bioelectron 29(1):82–88

    Article  CAS  Google Scholar 

  14. Du D, Wang MH, Cai J, Zhang AD (2010) Sensitive acetylcholinesterase biosensor based on assembly of β-cyclodextrins onto multiwall carbon nanotubes for detection of organophosphates pesticide. Sens Actuators, B 146(1):337–341

    Article  Google Scholar 

  15. Liu T, Su HC, Qu XJ, Ju P, Cui L, Ai SY (2011) Acetylcholinesterase biosensor based on 3-carboxyphenylboronic acid/reduced graphene oxide–gold nanocomposites modified electrode for amperometric detection of organophosphorus and carbamate pesticides. Sens Actuators, B 160(1):1255–1261

    Article  CAS  Google Scholar 

  16. Du D, Chen WJ, Cai J, Zhang J, Qu FG, Li HB (2008) Development of acetylcholinesterase biosensor based on CdTe quantum dots modified cysteamine self-assembled monolayers. J Electroanal Chem 623(1):81–85

    Article  CAS  Google Scholar 

  17. Liu SF, Liu J, Han XP, Cui YN, Wang W (2010) Electrochemical DNA biosensor fabrication with hollow gold nanospheres modified electrode and its enhancement in DNA immobilization and hybridization. Biosens Bioelectron 25(7):1640–1645

    Article  CAS  Google Scholar 

  18. Chauhan N, Pundir CS (2012) An amperometric acetylcholinesterase sensor based on Fe3O4 nanoparticle/multi-walled carbon nanotube-modified ITO-coated glass plate for the detection of pesticides. Electrochim Acta 67(15):79–86

    Article  CAS  Google Scholar 

  19. Peng WQ, Cong GW, Qu SC, Wang ZG (2006) Synthesis and photoluminescence of ZnS:cu nanoparticles. Opt Mater 29(2–3):313–317

    Article  CAS  Google Scholar 

  20. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601):2176–2179

    Article  CAS  Google Scholar 

  21. Sun Y, Xia Y (2002) Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. Anal Chem 74(20):5297–5305

    Article  CAS  Google Scholar 

  22. Guo SJ, Fang YX, Dong SJ, Wang EK (2007) High-Efficiency and Low-Cost Hybrid Nanomaterial as Enhancing Electrocatalyst: spongelike Au/Pt Core/Shell Nanomaterial with Hollow Cavity. J Phys Chem C 111(45):17104–17109

    Article  CAS  Google Scholar 

  23. Crumbliss AL, Perine SC, Stonehuerner J, Tubergen KR, Zhao JG, Henkens RW, O’Daly JP (1992) Colloidal gold as a biocompatible immobilization matrix suitable for the fabrication of enzyme electrodes by electrodeposition. Biotechnol Bioeng 40(4):483–490

    Article  CAS  Google Scholar 

  24. Sun X, Wang XY (2010) Acetylcholinesterase biosensor based on prussian blue-modified electrode for detecting organophosphorous pesticides. Biosens Bioelectron 25(12):2611–2614

    Article  CAS  Google Scholar 

  25. Li Na, Yuan Ruo, Chai Yaqin, Chen Shihong, An Haizhen (2008) Sensitive immunoassay of human chorionic gonadotrophin based on multi-walled carbon nanotube–chitosan matrix. Bioprocess Biosyst Eng 31(6):551–558

    Article  CAS  Google Scholar 

  26. Kobayashi Y, Horie M, Konno M, Rodríguez-González B, Liz-Marzán LM (2003) Synthesis and Properties of Silica Coated Cobalt Nanoparticles. J Phys Chem B 107(30):7420–7425

    Article  CAS  Google Scholar 

  27. Liang HP, Wan LJ, Bai CL, Jiang L (2005) Gold Hollow Nanospheres: tunable Surface Plasmon Resonance Controlled by Interior-Cavity Sizes. J Phys Chem B 109(16):7795–7800

    Article  CAS  Google Scholar 

  28. Yang G, Yuan R, Chai YQ (2008) A high-sensitive amperometric hydrogen peroxide biosensor based on the immobilization of hemoglobin on gold colloid/l-cysteine/gold colloid/nanoparticles Pt-chitosan composite film-modified platinum disk electrode. Colloid Surf B, Biointerf 61(1):93–100

    Article  CAS  Google Scholar 

  29. Tümtürk H, Şahin F, Demirel G (2007) A new method for immobilization of acetylcholinesterase. Bioprocess Biosyst Eng 30(2):141–145

    Article  Google Scholar 

  30. Chauhan N, Pundir CS (2011) An amperometric biosensor based on acetylcholinesterase immobilized onto ironoxide nanoparticles/multi-walled carbon nanotubes modified gold electrode for measurement of organophosphorus insecticides. Anal Chim Acta 701(1):66–74

    Article  CAS  Google Scholar 

  31. Schulze H, Vorlová S, Villatte F, Bachmann TT, Schmid RD (2003) Design of acetylcholinesterases for biosensor applications. Biosens Bioelectron 18(2–3):201–209

    Article  CAS  Google Scholar 

  32. Zamfir LG, Rotariu L, Bala C (2011) A novel, sensitive, reusable and low potential acetylcholinesterase biosensor for chlorpyrifos based on 1-butyl-3-methylimidazolium tetrafluoroborate/multiwalled carbon nanotubes gel. Biosens Bioelectron 26(8):3692–3695

    Article  CAS  Google Scholar 

  33. Qu Y, Sun Q, Xiao F, Shi G, Jin L (2010) Layer-by-layer self-assembled acetylcholinesterase/PAMAM-Au on CNTs modified electrode for sensing pesticides. Bioelectrochemistry 77(2):139–144

    Article  CAS  Google Scholar 

  34. Gan N, Wang F, Yang X, Li TH, Wang J (2008) A Nano Particles Modified Bienzyme Electrode Biosensor for the Detection of Carbamate and Organophosphorus Pesticides. Chinese Journal of Pesticide Science 10(3):329–334

    CAS  Google Scholar 

  35. Sun X, Zhai C, Wang XY (2011) Amperometric Acetylcholinesterase Biosensor Based on Multilayer Multiwall Carbon Nanotubes-chitosan Composite. Sensors & Transducers Journal 134(11):177–186

    CAS  Google Scholar 

  36. Yin HS, Ai SY, Xu J, Shi WJ, Zhu LS (2009) Amperometric biosensor based on immobilized acetylcholinesterase on gold nanoparticles and silk fibroin modified platinum electrode for detection of methyl paraoxon, carbofuran and phoxim. J Electroanal Chem 637(1–2):21–27

    CAS  Google Scholar 

  37. Du D, Huang X, Cai J, Zhang A (2007) Amperometric detection of triazophos pesticide using acetylcholinesterase biosensor based on multiwall carbon nanotube-chitosan matrix. Sens Actuators B 127(2):531–535

    Article  Google Scholar 

  38. Du D, Ye X, Cai J, Liu J, Zhang A (2010) Acetylcholinesterase biosensor design based on carbon nanotube-encapsulated polypyrrole and polyaniline copolymer for amperometric detection of organophosphates. Biosens Bioelectron 25(11):2503–2508

    Article  CAS  Google Scholar 

  39. Luo Y, Xiang ZC, Yue YY (2011) Investigation on the residual quantity of organophosphorus pesticides in vegetables of Mianyang modern preventive medicine. Mod Prev Med 38(18):3738–3739

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 30972055, 31101286), Agricultural Science and Technology Achievements Transformation Fund Projects of the Ministry of Science and Technology of China (No. 2011GB2C60020) and Shandong Provincial Natural Science Foundation, China (No. Q2008D03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xia Sun or Xiangyou Wang.

Additional information

Xia Sun and Chen Zhai are equally contributed to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X., Zhai, C. & Wang, X. A novel and highly sensitive acetyl-cholinesterase biosensor modified with hollow gold nanospheres. Bioprocess Biosyst Eng 36, 273–283 (2013). https://doi.org/10.1007/s00449-012-0782-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-012-0782-5

Keywords

Navigation