Skip to main content
Log in

Production of laccase from Trametes versicolor by solid-state fermentation using olive leaves as a phenolic substrate

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The aim of the present study was to investigate whether olive leaves were feasible as a substrate for laccase production by the white-rot fungus Trametes versicolor FPRL 28A INI under solid-state fermentation conditions. Different experiments were conducted to select the variables that allow obtaining high levels of laccase activity. In particular, the effects of the initial moisture content, substrate particle size, supplementation with inorganic and organic nitrogen sources were evaluated. Highest laccase activity (276.62 ± 25.67 U/g dry substrate) was achieved with 80 % initial moisture content and 1.4–1.6 mm particle size of the substrate supplemented with yeast extract (1 % (w/w) nitrogen). Such a high activity was obtained without any addition of inducers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Camarero S, Ibarra D, Martínez MJ, Martinez AT (2005) Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl Environ Microbiol 71:1775–1784

    Article  CAS  Google Scholar 

  2. Ergül FE, Sargın S, Öngen G, Sukan FV (2009) Dephenolisation of olive mill wastewater using adapted Trametes versicolor. Int Biodeterior Biodegr 63:1–6

    Article  Google Scholar 

  3. Kalme S, Jadhav S, Jadhav M, Govindwar S (2009) Textile dye degrading laccase from Pseudomonas desmolyticum NCIM 2112. Enzyme Microb Technol 44:65–71

    Article  CAS  Google Scholar 

  4. Rodríguez Couto S, Sanromán Á (2005) Coconut flesh: a novel raw material for laccase production by Trametes hirsuta under solid-state conditions. Application to Lissamine Green B decolourization. J Food Eng 71:208–213

    Article  Google Scholar 

  5. Thurston CF (1994) The structure and function of fungal laccases. Microbiol 1994(140):19–26

    Google Scholar 

  6. Rodríguez Couto S, Moldes D, Liébanas A, Sanromán Á (2003) Investigation of several bioreactor configurations for laccase production by Trametes versicolor operating in solid-state conditions. Biochem Eng J 15:21–26

    Article  Google Scholar 

  7. Roy JJ, Abraham TE, Abhijith KS, Kumar PV, Thakur MS (2005) Biosensor for the determination of phenols based on crosslinked enzyme crystals (CLEC) of laccase. Biosens Bioelectron 21:206–211

    Article  CAS  Google Scholar 

  8. Xiao YZ, Tu XM, Wang J, Zhang M, Cheng Q, Zeng WY, Shi YY (2003) Purification, molecular characterization and reactivity with aromatic compounds of a laccase from a basidiomycete. Trametes sp. strain AH28-2. Appl Microbiol Biotechnol 60:700–707

    CAS  Google Scholar 

  9. Soden DM, Dobson ADW (2004) Differential regulation of laccase gene expression in Pleurotus sajor-caju. Microbiol 14:1755–1763

    Google Scholar 

  10. Galhaup C, Goller S, Peterbauer CK, Strauss J, Haltrich D (2002) Characterization of the major laccase isoenzyme from Trametes pubescens and regulation of its synthesis by metal ions. Microbiol 148:2159–2169

    CAS  Google Scholar 

  11. Faraco V, Giardina P, Sannia G (2002) Metal-responsive elements in Pleurotus ostreatus laccase gene promoters. Microbiol 149:2155–2162

    Google Scholar 

  12. Baldrian P, Gabriel J (2002) Variability of laccase activity in the white-rot basidiomycete Pleurotus ostreatus. Folia Microbiol 47:385–390

    Article  CAS  Google Scholar 

  13. Zhang H, Hong YZ, Xiao YZ, Yuan J, Tu XM, Zhang XQ (2006) Efficient production of laccases by Trametes sp. AH28-2 in cocultivation with a Trichoderma strain. Appl Microbiol Biotechnol 73:89–94

    Article  CAS  Google Scholar 

  14. Osma JF, Toca Herrera JL, Rodríguez Couto S (2007) Banana skin: a novel waste for laccase production by Trametes pubescens under solid-state conditions. Application to synthetic dye decolouration. Dyes Pigm 75:32–37

    Article  CAS  Google Scholar 

  15. Selvakumar P, Ashakumary L, Pandey A (1998) Biosynthesis of glucoamylase from niger by solid-state fermentation using tea waste as the basis of a solid substrate. Bioresour Technol 65:83–85

    Article  CAS  Google Scholar 

  16. Gessesse A (1999) High-level xylanase production by an alkaliphilic Bacillus sp. by using solid state fermentation. Enzyme Microb Technol 25:68–72

    Article  CAS  Google Scholar 

  17. Souza DF, Souza CGM, Peralta RM (2001) Effect easily metabolizable sugars in the production of xylanase by Aspergillus tamarii in solid state fermentation. Process Biochem 36:835–838

    Article  Google Scholar 

  18. Murugesan K, Nam I, Kim Y, Chang Y (2007) Decolorization of reactive dyes by a thermostable laccase produced by Ganoderma lucidum in solid state culture. Enzyme Microb Technol 40:1662–1672

    Article  CAS  Google Scholar 

  19. Gómez J, Pazos M, Rodríguez S, Sanromán A (2005) Chestnut shell and barley bran as potential substrate for laccase production by Coriolopsis rigida under solid-state conditions. J Food Eng 68:315–319

    Article  Google Scholar 

  20. Rodríguez Couto S, Lorenzo MGM, Sanroman Á (2002) Screening of supports and inducers for laccase production by Trametes versicolor in semi-solid-state conditions. Process Biochem 38:249–255

    Article  Google Scholar 

  21. Rodríguez Couto S, Sanromán Á (2006) Effect of two wastes from groundnut processing on laccase production and dye decolourisation ability. J Food Eng 73:388–393

    Article  Google Scholar 

  22. Elisashvili V, Penninckx M, Kachlishvili E, Tsiklauri N, Metreveli E, Kharziani T, Kvesitadze G (2008) Lentinus edodes and Pleurotus species lignocellulolytic enzymes activity in submerged and solid-state fermentation of lignocellulosic wastes of different composition. Bioresour Technol 99:457–462

    Article  CAS  Google Scholar 

  23. Rodríguez Couto S, Lopez E, Sanromán Á (2006) Utilisation of grape seeds for laccase production in solid-state fermenters. J Food Eng 74:263–267

    Article  Google Scholar 

  24. Rosales E, Rodríguez Couto S, Sanromán MA (2005) Reutilisation of food processing wastes for production of relevant metabolites: application to laccase production by Trametes hirsuta. J Food Eng 66:419–423

    Article  Google Scholar 

  25. Rosales E, Rodríguez Couto S, Sanromán MA (2007) Increased laccase production by Trametes hirsute grown on ground orange peelings. Enzyme Microb Technol 40:1286–1290

    Article  CAS  Google Scholar 

  26. Benavente-García O, Castillo J, Lorente J, Ortuño A, Del Río JA (2000) Antioxidant activity of phenolics extracted from Olea europaea l. leaves. Food Chem 68:457–462

    Article  Google Scholar 

  27. Ferrira ICFR, Barros L, Soares HE, Bastos HL, Pereira JA (2007) Antioxidant activity and phenolic contents of Olea europaea L. leaves sprayed with different copper formulations. Food Chem 103:188–195

    Article  Google Scholar 

  28. Bouaziz M, Sayadi S (2005) Isolation and evaluation of antioxidants from leaves of a Tunisian cultivar olive tree. Eur J Lipid Sci Tech 107:497–504

    Article  CAS  Google Scholar 

  29. Pereira AP, Ferreira ICFR, Marcelino F, Valentão P, Andrade PB, Seabra R, Estevinho L, Bento A, Pereira JA (2007) Phenolic compounds and antimicrobial activity of olive (Olea europaea L. Cv. Cobrançosa) leaves. Molecules 12:1153–1162

    Article  CAS  Google Scholar 

  30. Sudjana AN, D’Orazio C, Ryan V, Rasool N, Ng J, Islam N, Riley TV, Hammer KA (2009) Antimicrobial activity of commercial Olea europaea (olive) leaf extract. Int J Antimicrobl Agents 33:461–463

    Article  CAS  Google Scholar 

  31. Bisignano G, Tomaino A, Lo Cascio R, Crisafi G, Uccella N, Saija A (1999) On the in vitro antimicrobial activity of oleuropein and hydroxytyrosol. J Pharm Pharmacol 51:971–974

    Article  CAS  Google Scholar 

  32. Markin D, Duek L, Berdicevsky I (2003) In vitro antimicrobial activity of olive leaves. Mycoses 46:132–136

    Article  CAS  Google Scholar 

  33. Martín-García I, Yáñez-Ruiz DR, Moumen A, Molina-Alcaide E (2006) Effect of polyethylene glycol, urea and sunflower meal on olive (Olea europaea var. europaea) leaf fermentation in continuous fermenters. Small Ruminant Res 61:53–61

    Article  Google Scholar 

  34. Molina Alcaide E, Yañez Ruiz DR, Moumen A, Martín García I (2003) Chemical composition and nitrogen availability for goats and sheep of some olive by-products. Small Ruminant Res 49:329–336

    Article  Google Scholar 

  35. Official methods of analysis of the association of official analytical chemists (1990) Dry matter content. In: Helrich K (ed) AOAC Inc., USA. Method No. 920.15

  36. Official methods of analysis of the association of official analytical chemists (1995a) Nitrogen in spices. In: Helrich K (ed) 16th edn. AOAC, Inc., USA. Method No. 920.165

  37. Paquot C, Hautfenne A (1987) International union of pure and applied chemistry, standard methods for the analysis of oils, fats and derivatives. Blackwell Scientific Publications, Oxford, England. Method No: 1.122

  38. Turkish Standards Institution (2003) Tea-determination of crude fibre content. Turkish Standards Institution, Ankara. 2003; TS ISO 15598

  39. Official methods of analysis of the association of official analytical chemists (1995b) Ash of canned vegetables. In: Helrich K (ed) 16th edn. AOAC, Inc., USA. Method No. 925.051

  40. Boudhrioua N, Bahloul N, Slimen IB, Kechaou N (2009) Comparison on the total phenol contents and the color of fresh and infrared dried olive leaves. Ind Crops Prod 29:412–419

    Article  CAS  Google Scholar 

  41. Škerget M, Kotnik P, Hadolin M, Hraš AR, Simonic M, Knez Z (2005) Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chem 89:191–198

    Article  Google Scholar 

  42. Udayasoorian C, Prabu PC (2005) Biodegradation of phenols by ligninolytic fungus, Trametes versicolor. J Biol Sci 5:824–827

    Article  CAS  Google Scholar 

  43. Tien M, Kirk TK (1984) Lignin-degrading enzymes from Phanerochaete chtysosporium: purification, characterization and catalytic properties of a unique H2O2-requiring oxygenase. Proc Natl Acad Sci 81:2280–2284

    Article  CAS  Google Scholar 

  44. Kaşıkara Pazarlıoğlu N, Sariişik M, Telefoncu A (2005) Laccase: production by Trametes versicolor and application to denim washing. Process Biochem 40:1673–1678

    Article  Google Scholar 

  45. Selvam K, Swaminathan K, Song MH, Chae KS (2002) Biological treatment of a pulp and paper industry effluent by Fomes lividus and Trametes versicolor. World J Microbiol Biotechnol 18:523–536

    Article  CAS  Google Scholar 

  46. Mikiashvili N, Elisashvili V, Wasser S, Nevo E (2005) Carbon and nitrogen sources influence the ligninolytic enzyme activity of Trametes versicolor. Biotechnol Lett 27:955–959

    Article  CAS  Google Scholar 

  47. Vogel HJ (1956) A convenient growth medium for Neurospora crassa. Genetic Bull 13:42–43

    Google Scholar 

  48. Palmieri G, Giardinai P, Bianco C, Scaloni A, Capasso A, Sannia GA (1997) Novel white laccase from Pleuroutus ostreatus. J Biol Chem 272:31301–31307

    Article  CAS  Google Scholar 

  49. Pandey A, Selvakumar P, Soccol CR, Nigam P (1999) Solid state fermentation for the production of industrial enzymes. Curr Sci 77:149–162

    CAS  Google Scholar 

  50. Durand A (2003) Bioreactor designs for solid state fermentation. Biochem Eng J 13:113–125

    Article  CAS  Google Scholar 

  51. Lu W, Li D, Wu Y (2003) Influence of water activity and temperature on xylanase biosynthesis in pilot-scale solid-state fermentation by Aspergillus sulphureus. Enzyme Microb Technol 32:305–311

    Article  CAS  Google Scholar 

  52. Pandey A, Soccol CR, Rodriguez-Leon JA, Nigam P (2001) Solid-state fermentation in biotechnology—fundamentals and applications. Asiatech Publishers, New Delhi, pp 21–31

    Google Scholar 

  53. Bollag JM, Leonowicz A (1984) Comparative studies of extracellular fungal laccases. Appl Environ Microbiol 48:849–854

    CAS  Google Scholar 

  54. Swamy J, Ramsay JA (1999) The evaluation of white rot fungi in the decolouration of textile dyes. Enzyme Microbiol Technol 24:130–137

    Article  CAS  Google Scholar 

  55. Revankar MS, Lele SS (2006) Enhanced production of laccase using a new isolate of white rot fungus WR-1. Process Biochem 41:581–588

    Article  CAS  Google Scholar 

  56. Vikineswary S, Abdullah N, Renuvathani M, Sekaran M, Pandey A, Jones EBG (2006) Productivity of laccase in solid state fermentation of selected agro-residues by Pycnoporus sanguineus. Bioresour Technol 97:171–177

    Article  CAS  Google Scholar 

  57. Mishra A, Kumar S (2007) Cyanobacterial biomass as N-supplement to agro-waste for hyper-production of laccase from Pleurotus ostreatus in solid state fermentation. Process Biochem 42:681–685

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Ege University Research Fund (İzmir, Turkey, Project no: 009 MUH 008). The authors wish to thank Dr. Tajalli Keshavarz and Christine S. Evans (Westminster University, England) for kindly supplying the fungal strain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayıt Sargın.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aydınoğlu, T., Sargın, S. Production of laccase from Trametes versicolor by solid-state fermentation using olive leaves as a phenolic substrate. Bioprocess Biosyst Eng 36, 215–222 (2013). https://doi.org/10.1007/s00449-012-0777-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-012-0777-2

Keywords

Navigation