Abstract
Engineering of Saccharomyces cerevisiae to produce advanced biofuels such as isobutanol has received much attention because this yeast has a natural capacity to produce higher alcohols. In this study, construction of isobutanol production systems was attempted by overexpression of effective 2-keto acid decarboxylase (KDC) and combinatorial overexpression of valine biosynthetic enzymes in S. cerevisiae D452-2. Among the six putative KDC enzymes from various microorganisms, 2-ketoisovalerate decarboxylase (Kivd) from L. lactis subsp. lactis KACC 13877 was identified as the most suitable KDC for isobutanol production in the yeast. Isobutanol production by the engineered S. cerevisiae was assessed in micro-aerobic batch fermentations using glucose as a sole carbon source. 93 mg/L isobutanol was produced in the Kivd overexpressing strain, which corresponds to a fourfold improvement as compared with the control strain. Isobutanol production was further enhanced to 151 mg/L by additional overexpression of acetolactate synthase (Ilv2p), acetohydroxyacid reductoisomerase (Ilv5p), and dihydroxyacid dehydratase (Ilv3p) in the cytosol.
Similar content being viewed by others
References
Gray KA, Zhao L, Emptage M (2006) Bioethanol. Curr Opin Chem Biol 10:141–146
Lee SH, Kodaki T, Park YC, Seo JH (2012) Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae. J Biotechnol 158:184–191
Mussatto SI, Dragone G, Guimarães PMR, Silva JPA, Carneiro LM, Roberto IC, Vicente A, Domingues L, Teixeira JA (2010) Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv 28:817–830
Connor MR, Liao JC (2009) Microbial production of advanced transportation fuels in non-natural hosts. Curr Opin Biotechnol 20:307–315
Dürre P (2007) Biobutanol: an attractive biofuel. Biotechnol J 2:1525–1534
Keasling JD, Chou H (2008) Metabolic engineering delivers next-generation biofuels. Nat Biotechnol 26:298–299
Zhang K, Sawaya MR, Eisenberg DS, Liao JC (2008) Expanding metabolism for biosynthesis of nonnatural alcohols. Proc Natl Acad Sci USA 105:20653–20658
Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89
Atsumi S, Liao JC (2008) Metabolic engineering for advanced biofuels production from Escherichia coli. Curr Opin Biotechnol 19:414–419
Fischer CR, Klein-Marcuschamer D, Stephanopoulos G (2008) Selection and optimization of microbial hosts for biofuels production. Metab Eng 10:295–304
Steen E, Chan R, Prasad N, Myers S, Petzold C, Redding A, Ouellet M, Keasling J (2008) Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb Cell Fact 7:36
Eden A, Van Nedervelde L, Drukker M, Benvenisty N, Debourg A (2001) Involvement of branched-chain amino acid aminotransferases in the production of fusel alcohols during fermentation in yeast. Appl Microbiol Biotechnol 55:296–300
Hazelwood LA, Daran JM, van Maris AJA, Pronk JT, Dickinson JR (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74:2259–2266
Schoondermark-Stolk SA, Tabernero M, Chapman J, Schure EG, Verrips CT, Verkleij AJ, Boonstra J (2005) Bat2p is essential in Saccharomyces cerevisiae for fusel alcohol production on the non‐fermentable carbon source ethanol. FEMS Yeast Res 5:757–766
Dickinson J (2000) Pathways of leucine and valine catabolism in yeast. Method Enzymol 324:80–92
Dickinson JR, Harrison SJ, Hewlins MJE (1998) An investigation of the metabolism of valine to isobutyl alcohol in Saccharomyces cerevisiae. J Biol Chem 273:25751–25756
Ryan E, Kohlhaw G (1974) Subcellular localization of isoleucine-valine biosynthetic enzymes in yeast. J Bacteriol 120:631–637
Dickinson JR, Salgado LEJ, Hewlins MJE (2003) The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae. J Biol Chem 278:8028–8034
Vuralhan Z, Morais MA, Tai SL, Piper MDW, Pronk JT (2003) Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae. Appl Environ Microbiol 69:4534–4541
Savrasova EA, Kivero AD, Shakulov RS, Stoynova NV (2011) Use of the valine biosynthetic pathway to convert glucose into isobutanol. J Ind Microbiol Biotechnol 38:1287–1294
Smith KM, Cho KM, Liao JC (2010) Engineering Corynebacterium glutamicum for isobutanol production. Appl Microbiol Biotechnol 87:1045–1055
Chen X, Nielsen KF, Borodina I, Kielland-Brandt MC, Karhumaa K (2011) Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism. Biotechnol Biofuels 4:21
Ha SJ, Galazka JM, Kim SR, Choi JH, Yang X, Seo JH, Louise Glass N, Cate JHD, Jin YS (2011) Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc Natl Acad Sci USA 108:504–509
Yep A, Kenyon GL, McLeish MJ (2006) Determinants of substrate specificity in KdcA, a thiamin diphosphate-dependent decarboxylase. Bioorg Chem 34:325–336
Plaza M, Fernández de Palencia P, Peláez C, Requena T (2004) Biochemical and molecular characterization of α‐ketoisovalerate decarboxylase, an enzyme involved in the formation of aldehydes from amino acids by Lactococcus lactis. FEMS Microbiol Lett 238:367–374
Acknowledgments
This research was supported by the Advanced Biomass R&D Center (ABC) of Korea Grant funded by the Ministry of Education, Science and Technology (2010-0029799) and the Marine Biotechnology Program funded by the Ministry of Land, Transport and Maritime Affairs of Korean Government.
Author information
Authors and Affiliations
Corresponding authors
Additional information
W.-H. Lee and S.-O. Seo contributed equally to this work.
Rights and permissions
About this article
Cite this article
Lee, WH., Seo, SO., Bae, YH. et al. Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes. Bioprocess Biosyst Eng 35, 1467–1475 (2012). https://doi.org/10.1007/s00449-012-0736-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00449-012-0736-y