Advertisement

Bioprocess and Biosystems Engineering

, Volume 35, Issue 5, pp 827–833 | Cite as

Rapid biological synthesis of platinum nanoparticles using Ocimum sanctum for water electrolysis applications

  • C. Soundarrajan
  • A. Sankari
  • P. Dhandapani
  • S. Maruthamuthu
  • S. Ravichandran
  • G. Sozhan
  • N. Palaniswamy
Original Paper

Abstract

The leaf extract of Ocimum sanctum was used as a reducing agent for the synthesis of platinum nanoparticles from an aqueous chloroplatinic acid (H2PtCl6·6H2O). A greater conversion of platinum ions to nanoparticles was achieved by employing a tulsi leaf broth with a reaction temperature of 100 °C. Energy-dispersive absorption X-ray spectroscopy confirmed the platinum particles as major constituent in the reduction process. It is evident from scanning electron microscopy that the reduced platinum particles were found as aggregates with irregular shape. Fourier-transform infrared spectroscopy revealed that the compounds such as ascorbic acid, gallic acid, terpenoids, certain proteins and amino acids act as reducing agents for platinum ions reduction. X-ray diffraction spectroscopy suggested the associated forms of platinum with other molecules and the average particle size of platinum nanoparticle was 23 nm, calculated using Scherer equation. The reduced platinum showed similar hydrogen evolution potential and catalytic activity like pure platinum using linear scan voltammetry. This environmentally friendly method of biological platinum nanoparticles production increases the rates of synthesis faster which can potentially be used in water electrolysis applications.

Keywords

Biological synthesis Nanoparticles Platinum Plant extract Ocimum sanctum 

Notes

Acknowledgments

The authors would like to express their thanks to Instrumentation Division of CECRI for analyzing the samples.

References

  1. 1.
    Govindaraju K, Tamilselvan S, Kiruthiga V, Singaravelu G (2010) J Biopest 3:394–399Google Scholar
  2. 2.
    Nanda A, Saravanan M (2009) Nanomedicine 5:452–456CrossRefGoogle Scholar
  3. 3.
    Garima S, Riju B, Kunal K, Ashish RS, Rajendra PS (2010) J Nanopart Res 1–8. doi: 10.1007/s11051-010-0193-y
  4. 4.
    Riddin T, Govender Y, Whiteley CG (2009) Enzym Microb Technol 45:267–273CrossRefGoogle Scholar
  5. 5.
    Yageshni G, Tamsyn R, Mariekie G, Chris GW (2009) Biotechnol Lett 31:95–100CrossRefGoogle Scholar
  6. 6.
    Yasuhiro K, Kaori O, Norizon S, Toshiyuki N, Shinsuke N, Hajime H et al (2007) J Biotechnol 128:648–653CrossRefGoogle Scholar
  7. 7.
    Gardea TJL, Parsons JG, Gomez E, Peralta VJ, Troiani HE, Santiago P et al (2002) Nano Lett 2:397–401CrossRefGoogle Scholar
  8. 8.
    Jae YS, Eun YK, Beom SK (2010) Bioprocess Biosyst Eng 33:159–164CrossRefGoogle Scholar
  9. 9.
    Vineet K, Sudesh KY (2008) J Chem Technol Biotechnol 84:151–157Google Scholar
  10. 10.
    Shankar M, Bijay RM, Sushil CM (2009) Indian J Physiol Pharmacol 53:291–306Google Scholar
  11. 11.
    Wang M, Chen Q, Jiang C, Yang D, Liu X, Xu S (2007) Colloids Surf A Physicochem Eng Asp 30173–30179Google Scholar
  12. 12.
    Sondi I, Goia DV, Matijevic EJ (2008) Colloid Interface Sci 260:75–78CrossRefGoogle Scholar
  13. 13.
    Liu Z, Ling XY, Su X, Lee JY (2004) J Phys Chem B 108:8234–8240CrossRefGoogle Scholar
  14. 14.
    Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X et al (2007) Nanotechnology 18:105104–105114CrossRefGoogle Scholar
  15. 15.
    Rai A, Chaudhary M, Ahmad A, Bhargava S, Sastry M (2007) Mater Res Bull 42:1212–1220CrossRefGoogle Scholar
  16. 16.
    Klug HP, Alexander LE (1974) X-ray diffraction procedures for polycrystalline and amorphous materials. Wiley, New YorkGoogle Scholar
  17. 17.
    Naheed A, Seema S, Singh VN, Shamsi SF, Anjum F, Mehta BR (2010) Biotechnol Res Int 10:1–8Google Scholar
  18. 18.
    Thirumurugan A, Jiflin GJ, Rajagomathi G, Neethu Anns T, Ramachandran S, Jaiganesh R (2010) Int J Biological Technol 1:75–77Google Scholar
  19. 19.
    Sastry M, Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan M et al (2010) Colloids Surf B Biointerf 28:313–318Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • C. Soundarrajan
    • 1
  • A. Sankari
    • 2
  • P. Dhandapani
    • 1
  • S. Maruthamuthu
    • 1
  • S. Ravichandran
    • 2
  • G. Sozhan
    • 2
  • N. Palaniswamy
    • 1
  1. 1.Corrosion Protection DivisionCentral Electrochemical Research Institute (CSIR)KaraikudiIndia
  2. 2.Electroinorganic DivisionCentral Electrochemical Research Institute (CSIR)KaraikudiIndia

Personalised recommendations