Skip to main content
Log in

Chloroform aerobic cometabolism by butane-growing Rhodococcus aetherovorans BCP1 in continuous-flow biofilm reactors

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This work focuses on chloroform (CF) cometabolism by a butane-grown aerobic pure culture (Rhodococcus aetherovorans BCP1) in continuous-flow biofilm reactors. The goals were to obtain preliminary information on the feasibility of CF biodegradation by BCP1 in biofilm reactors and to evaluate the applicability of the pulsed injection of growth substrate and oxygen to biofilm reactors. The attached-cell tests were initially conducted in a 0.165-L bioreactor and, then, scaled-up to a 1.772-L bioreactor. Glass cylinders were utilized as biofilm carriers. The continuous supply of growth substrate (butane), which led to the attainment of the highest CF degradation rate (8.4 mgCF day−1 m −2biofilm surface ), was compared with four schedules of butane and oxygen pulsed feeding. The pulsed injection technique allowed the attainment of a ratio of CF mass degraded per unit mass of butane supplied equal to 0.16 mgCF mg −1butane , a value 4.4 times higher than that obtained with the continuous substrate supply. A procedure based on the utilization of integral mass balances and of average concentrations along the bioreactors resulted in a satisfactory match between the predicted and the experimental CF degradation performances, and can therefore be utilized to provide a guideline for optimizing the substrate pulsed injection schedule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

b :

Endogenous decay coefficient (day−1)

c i :

Aqueous phase concentration of compound i (g m−3; gprotein m−3 for the cells of BCP1)

\( \bar{c}_{i} \) :

Average concentration of compound i along the bioreactor (g m−3; gprotein m−3 for the cells of BCP1)

\( \bar{c}_{X}^{\prime \prime } \) :

Total cell mass in the bioreactor divided by the total interfacial area (gprotein m −2biofilm surface )

\( \bar{c}_{X}^{\prime \prime \prime } \) :

Total cell mass in the bioreactor divided by the reactor volume (gprotein m −3reactor )

D i :

Molecular diffusivity of compound i in water (m2 s−1)

D L,i :

Longitudinal dispersion coefficient of compound i (m2 s−1)

k CF,ac :

CF first-order constant for attached cells of BCP1 (m 3pore volume  g −1protein  day−1)

k CF,sc :

CF first-order constant for suspended cells of BCP1 (m 3pore volume  g −1protein  day−1)

K i,B or CF :

Constant of butane inhibition on CF degradation or CF inhibition on butane uptake (g m−3)

K s,B or CF :

Butane or CF half-saturation constant (g m−3)

L :

Column length (m)

m CF :

Total CF mass in the bioreactor (g)

m X :

Total cell mass in the bioreactor (gprotein)

\( \dot{m}_{\text{B,inlet}} ,\dot{m}_{\text{CF,inlet}} \) :

Butane or CF mass rate entering the bioreactor (g day−1)

n P :

Number of daily butane and oxygen pulses (–)

Pe:

Peclet number, evaluated as \( {{vL} \mathord{\left/ {\vphantom {{vL} {D_{L,i} }}} \right. \kern-\nulldelimiterspace} {D_{L,i} }} \)(–)

Q :

Flow rate (m3 day−1)

q B or CF :

Butane or CF specific biodegradation rate (g g −1protein day−1)

q max,B or CF :

Butane or CF maximum specific biodegradation rate (g g −1protein  day−1)

\( {{\bar{R}_{\text{CF}}^{\prime \prime } } \mathord{\left/ {\vphantom {{\bar{R}_{\text{CF}}^{\prime \prime } } {\bar{c}_{\text{CF}} }}} \right. \kern-\nulldelimiterspace} {\bar{c}_{\text{CF}} }} \) :

Total CF mass degraded daily, divided by the total interfacial area and by the average CF concentration along the reactor (Lpore volume m −2biofilm surface  day−1)

\( {{\bar{R}_{\text{CF}}^{\prime \prime \prime } } \mathord{\left/ {\vphantom {{\bar{R}_{\text{CF}}^{\prime \prime \prime } } {\bar{c}_{\text{CF}} }}} \right. \kern-\nulldelimiterspace} {\bar{c}_{\text{CF}} }} \) :

Total CF mass degraded daily, divided by the reactor volume and by the average CF concentration along the reactor (day−1)

S biofilm :

Total surface of the biofilm carriers (m2)

\( t_{\text{B,pulse}} \) :

Duration of each butane pulse (h)

\( t_{\text{B}}^{*} \) :

Daily hours of butane feeding/24 (–)

T c,CF :

CF transformation capacity (CF degraded per unit amount of cells inactivated by the toxic degradation products or by NADH depletion; gCF g −1protein )

v :

Interstitial velocity (m h−1)

Y B :

Cell growth yield on butane (gprotein g −1butane )

α L :

Longitudinal dispersivity (m)

ε biofilm :

Biofilm efficiency (–)

η B , η CF :

Butane or CF conversion (–)

References

  1. Chang HL, Alvarez-Cohen L (1996) Biodegradation of individual and multiple chlorinated aliphatic hydrocarbons by methane-oxidizing cultures. Appl Environ Microbiol 62:3371–3377

    CAS  Google Scholar 

  2. Anderson JE, McCarty PL (1996) Effect of three chlorinated ethenes on growth rates for a methanotrophic mixed culture. Environ Sci Technol 30:3517–3524

    Article  CAS  Google Scholar 

  3. Morono Y, Unno H, Hori K (2006) Correlation of TCE cometabolism with growth characteristics on aromatic substrates in toluene-degrading bacteria. Biochem Eng J 31:173–179

    Article  CAS  Google Scholar 

  4. Hori K, Mii J, Morono Y, Tanji Y, Unno H (2005) Kinetic analyses of trichloroethylene cometabolism by toluene-degrading bacteria harboring a tod homologous gene. Biochem Eng J 26:59–64

    Article  CAS  Google Scholar 

  5. Ely RL, Williamson KJ, Hyman MR, Arp DJ (1997) Cometabolism of chlorinated solvents by nitrifying bacteria: kinetics, substrate interactions, toxicity effects and bacterial response. Biotechnol Bioeng 54:520–534

    Article  CAS  Google Scholar 

  6. Kim Y, Arp D, Semprini L (2000) Chlorinated solvent cometabolism by butane-grown mixed culture. J Env Eng 126:934–942

    Article  CAS  Google Scholar 

  7. Kim Y, Arp D, Semprini L (2002) Kinetic and inhibition studies for the aerobic cometabolism of 1, 1, 1-trichloroethane, 1, 1-dichloroethylene, and 1, 1-dichloroethane by a butane-grown mixed culture. Biotechnol Bioeng 80:498–508

    Article  CAS  Google Scholar 

  8. Frascari D, Zannoni A, Fedi S, Pii Y, Zannoni D, Pinelli D, Nocentini M (2005) Aerobic cometabolism of chloroform by butane-grown microorganisms: long-term monitoring of depletion rates and isolation of a high-performing strain. Biodegradation 16:147–158

    Article  Google Scholar 

  9. Frascari D, Pinelli D, Nocentini M, Pii Y, Fedi S, Zannoni D (2006) Chloroform degradation by butane-grown cells of Rhodococcus aetherovorans BCP1. Appl Microbiol Biotechnol 73:421–428

    Article  CAS  Google Scholar 

  10. Frascari D, Zannoni A, Pinelli D, Nocentini M (2007) Chloroform aerobic cometabolism by butane-utilizing bacteria in bioaugmented and nonbioaugmented soil/groundwater microcosms. Proc Biochem 42:1218–1228

    Article  CAS  Google Scholar 

  11. Semprini L, Dolan ME, Mathias MA, Hopkins GD, McCarty PL (2007) Laboratory, field, and modeling studies of bioaugmentation of butane-utilizing microorganisms for the in situ cometabolic treatment of 1, 1-dichloroethene, 1, 1-dichloroethane, and 1, 1, 1-trichloroethane. Adv Water Resour 30:1528–1546

    Article  CAS  Google Scholar 

  12. Semprini L, Dolan ME, Hopkins GD, McCarty PL (2009) Bioaugmentation with butane-utilizing microorganisms to promote in situ cometabolic treatment of 1, 1, 1-trichloroethane and 1, 1-dichloroethene. J Contam Hydrol 103:157–167

    Article  CAS  Google Scholar 

  13. Environmental Security Technology Certification Program (2001) Use of cometabolic air sparging to remediate chloroethene-contaminated groundwater aquifers Cost and performance report. US Department of Defense, Washington DC

    Google Scholar 

  14. Kim Y, Istok JD, Semprini L (2008) Single-well, gas-sparging tests for evaluating the in situ aerobic cometabolism of cis-1, 2-dichloroethene and trichloroethene. Chemosphere 71:1654–1664

    Article  CAS  Google Scholar 

  15. Environment Canada (2001) Health Canada Priority substances list assessment report: Chloroform. ISBN 0-662-29247-2

  16. USEPA (2007) Toxic Release Inventory Program. EPA, Washington

    Google Scholar 

  17. Delle Site A (2001) Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for selected pollutants: a review. J Phys Chem Ref Data 30:187–439

    Article  CAS  Google Scholar 

  18. Mileva A, Sapundzhiev TS, Beschkov V (2008) Modeling 1, 2-dichloroethane biodegradation by Klebsiella oxytocava 8391 immobilized on granulated activated carbon. Bioprocess Biosyst Eng 31:75–85

    Article  CAS  Google Scholar 

  19. Karamanev DG, Nikolov LN (1991) A comparison between the reaction rates in biofilm reactors and free suspended cells bioreactors. Bioprocess Biosyst Eng 6:127–130

    CAS  Google Scholar 

  20. Tziotzios G, Teliou M, Kaltsouni V, Lyberatos G, Vayenas DV (2005) Biological phenol removal using suspended growth and packed bed reactors. Biochem Eng J 26:65–71

    Article  CAS  Google Scholar 

  21. Gandhi RK, Hopkins GD, Goltz MN, Gorelick SM, McCarty PL (2002) Full-scale demonstration of in situ cometabolic biodegradation of trichloroethylene in groundwater. 2: comprehensive analysis of field data using reactive transport modeling. Wat Resour Res 38:1040

    Article  Google Scholar 

  22. Goltz MN, Bouwer EJ, Huang J (2001) Transport issues and bioremediation modeling for the in situ aerobic cometabolism of chlorinated solvents. Biodegradation 12:127–140

    Article  CAS  Google Scholar 

  23. Hopkins GD, McCarty PL (1995) Field evaluation of in situ aerobic cometabolism of trichloroethylene and three dichloroethylene isomers using phenol and toluene as the primary substrates. Environ Sci Technol 29:1628–1637

    Article  CAS  Google Scholar 

  24. McCarty PL, Goltz MN, Hopkins GD, Allan JP, Dolan ME, Kawakami BT, Carrothers TJ (1998) Full-scale evaluation of in situ cometabolic degradation of trichloroethylene in groundwater through toluene injection. Environ Sci Technol 32:88–100

    Article  CAS  Google Scholar 

  25. Yuehuei HA, Friedman RJ (1997) Laboratory methods for studies of bacterial adhesion. J Microbiol Meth 30:141–152

    Article  Google Scholar 

  26. Perry RH, Green DW, Maloney JO (1997) Perry’s chemical engineers’ handbook. McGraw-Hill, New York

    Google Scholar 

  27. Witherspoon PA, Saraf DN (1965) Diffusion of methane, ethane, propane, and n-butane in water from 25 to 43 °C. J Phys Chem 69:3752–3755

    Article  CAS  Google Scholar 

  28. Smith LH, Kitanidis PK, McCarty PL (1997) Numerical modeling and uncertainties in rate coefficients for methane utilization and TCE cometabolism by a methane-oxidizing mixed culture. Biotechnol Bioeng 53:320–331

    Article  CAS  Google Scholar 

  29. Alvarez-Cohen L, Speitel GE Jr (2001) Kinetics of aerobic cometabolism of chlorinated solvents. Biodegradation 12:105–126

    Article  CAS  Google Scholar 

  30. Chang HL, Alvarez-Cohen L (1995) Model for the cometabolic biodegradation of chlorinated organics. Environ Sci Technol 29:2357–2367

    Article  CAS  Google Scholar 

  31. Frascari D, Pinelli D, Nocentini M, Baleani E, Cappelletti M, Fedi S (2008) A kinetic study of chlorinated solvent cometabolic biodegradation by propane-grown Rhodococcus sp. PB1. Biochem Eng J 42:139–147

    Article  CAS  Google Scholar 

  32. ISO (1995) ISO Guide 98-3: uncertainy of measurement—Part 3: guide to the expression of uncertainty in measurement

  33. Berthouex PM, Brown LC (1994) Statistics for environmental engineers. Lewis, Boca Raton

    Google Scholar 

  34. Hamamura N, Page C, Long T, Semprini L, Arp DJ (1997) Chloroform cometabolism by butane-grown CF8, Pseudomonas butanovora and Mycobacterium vaccae job5 and methane-grown Methylosinus trichosporium OB3b. Appl Environ Microbiol 63:3607–3613

    CAS  Google Scholar 

  35. Chang WK, Criddle CS (1997) Experimental evaluation of a model for cometabolism: prediction of simultaneous degradation of trichloroethylene and methane by a methanotrophic mixed culture. Biotechnol Bioeng 54:491–501

    Article  Google Scholar 

  36. Han NW, Bhakta J, Carbonell RG (1985) Longitudinal and lateral dispersion in packed beds: effect of column length and particle size distribution. AIChE J 31:277–288

    Article  CAS  Google Scholar 

  37. Eidsath A, Carbonell RG, Whitaker S, Herrmann LR (1983) Dispersion in pulsed systems—III: comparison between theory and experiments for packed beds. Chem Eng Sci 38:1803–1816

    Article  CAS  Google Scholar 

  38. Sun NZ (1996) Mathematical modeling of groundwater pollution. Springer, New York

    Google Scholar 

  39. Tchobanoglous G, Franklin LB, Stense HD (2003) Wastewater engineering: treatment and reuse. Metcalf & Eddy Inc, 4th edn. McGraw-Hill, Boston

    Google Scholar 

  40. Dolan ME, McCarty PL (1995) Methanotrophic chloroethene transformation capacities and 1, 1-dichloroethylene product toxicity. Environ Sci Technol 29:2741–2747

    Article  CAS  Google Scholar 

  41. Alvarez-Cohen L, McCarty PL (1991) Two-stage dispersed-growth treatment of halogenated aliphatic compounds by cometabolism. Environ Sci Technol 25:1387–1393

    Article  CAS  Google Scholar 

  42. Lackey LW, Phelps TJ, Bienkowski PR, White DC (1993) Biodegradation of chlorinated aliphatic hydrocarbon mixtures in a single pass packed bed reactor. Appl Biochem Biotechnol 39(40):701–713

    Article  Google Scholar 

  43. Fayolle F, Le Roux F, Treboul C, Ballerini D (1995) TCE degradation by methanotrophic bacteria in a water-saturated sand column. In: Hinchee RE, Semprini L, Leeson A (eds) Bioremediation of chlorinated solvents. Battelle Press, Columbus

    Google Scholar 

  44. Lang MM, Roberts PV, Semprini L (1997) Model simulations in support of field scale design and operation of bioremediation based on cometabolic degradation. Ground Water 35:565–574

    Article  CAS  Google Scholar 

  45. Roberts PV, Hopkins GD, Mackay DM, Semprini L (1990) A filed evaluation of in situ biodegradation of chlorinated ethenes: part 1, methodology and field site characterization. Ground Water 28:591–604

    Article  CAS  Google Scholar 

  46. Rittman BE, McCarty PL (2001) Environmental biotechnology: principles and applications. McGraw-Hill, London

    Google Scholar 

  47. Das Chhaya, Chowdhury Ranjana, Bhattacharya Pinaki (2011) Experiments and three phase modelling of a biofilter for the removal of toluene and trichloroethylene. Bioprocess Biosyst Eng 34:447–458

    Article  CAS  Google Scholar 

  48. Fang Y, Govind R (2008) A new Thiele’s modulus for the Monod biofilm model. Chin J Chem Eng 16:277–286

    Article  CAS  Google Scholar 

  49. Semprini L, Hopkins GD, Roberts PV, Grbic-Galic D, McCarty PL (1991) A filed evaluation of in situ biodegradation of chlorinated ethenes: part 3, studies of competitive inhibition. Ground Water 29:239–250

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Project co-funding by the Italian Ministry of University and Research through research grant PRIN 2008 “Novel processes for the sustainable remediation of groundwater contaminated by chlorinated compounds”, and by the European Commission under Grant Agreement no. 265946 (Minotaurus project, 7th FP) is acknowledged. The authors greatly acknowledge Luis Olarte, Michele Pugliese and Marco Ramos for their help in the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Frascari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciavarelli, R., Cappelletti, M., Fedi, S. et al. Chloroform aerobic cometabolism by butane-growing Rhodococcus aetherovorans BCP1 in continuous-flow biofilm reactors. Bioprocess Biosyst Eng 35, 667–681 (2012). https://doi.org/10.1007/s00449-011-0647-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-011-0647-3

Keywords

Navigation