Skip to main content
Log in

Evaluation of factors influencing the enantioselective enzymatic esterification of lactic acid in ionic liquid

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In this paper esterification of ethanol and lactic acid catalyzed by Candida antarctica B (Novozyme 435) in ionic liquid (Cyphos 104) was studied. The influence of different variables on lipase enantioselectivity and lactic acid conversion was investigated. The variables investigated were ionic liquid mass/lipase mass ratio, water content, alcohol excess and temperature. Using the Design Expert software 23 factorial experimental plan (two levels, three factors) was performed to ascertain the effect of selected variables and their interactions on the ethyl lactate enantiomeric excess and lactic acid conversion. The results of the experiments and statistical processing suggest that temperature and alcohol excess have the highest effect on the ethyl lactate enantiomeric excess, while temperature and water content have the highest influence on the lactic acid conversion. The statistical mathematical model developed on the basis of the experimental data showed that the highest enantiomeric excess achieved in the investigated variable range is 34.3%, and the highest conversion is 63.8% at the initial conditions of water content at 8%; 11-fold molar excess of alcohol and temperature at 30 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jaeger KE, Schneidinger B, Rosenau F, Werner M, Lang D, Dijkstra BW, Schimossek K, Zonta A, Reetz MT (1997) Bacterial lipases for biotechnological applications. J Mol Cat B Enzym 3:3–12

    Article  CAS  Google Scholar 

  2. Theil F (1995) Lipase-supported synthesis of biologically active compounds. Chem Rev 95:2203–2227

    Article  CAS  Google Scholar 

  3. Kakasi-Zsurka S, Todea A, But A, Paul C, Boeriu CG, Davidescu C, Nagy L, Kuki A, Keki S, Peter F (2011) Biocatalytic synthesis of new copolymers from 3-hydroxybutyric acid and a carbohydrate lactone. J Mol Cat B Enzym 71:22–28

    Article  CAS  Google Scholar 

  4. Jaeger KE, Eggert T (2002) Lipases for biotechnology. Cur Opin Biotechnol 13:390–397

    Article  CAS  Google Scholar 

  5. Turner NJ (2003) Controlling chirality. Cur Opin Biotechnol 14:401–406

    Article  CAS  Google Scholar 

  6. Berglund P (2001) Controlling lipase enantioselectivity for organic synthesis. Biomol Eng 18:13–22

    Article  CAS  Google Scholar 

  7. Chang CS, Su CC, Zhuang JR, Tsai SW (2004) Enhancement of enantioselectivity on the synthesis of (S)-naproxen morpholinoalkyl ester prodrugs in organic solvents using isopropanol-dried immobilized lipase. J Mol Cat B Enzym 30:151–157

    Article  CAS  Google Scholar 

  8. Bhandarkar SV, Neau SH (2000) Lipase-catalyzed enantioselective esterification of flurbiprofen with n-butanol. Eur J Biotechnol 3(2):1–7

    Google Scholar 

  9. Bornscheuer UT (2002) Methods to increase enantioselectivity of lipases and esterases. Cur Opin Biotechnol 13:543–547

    Article  CAS  Google Scholar 

  10. Engström K, Nyhlén J, Sandström AG, Bäckvall JE (2010) Directed evolution of an enantioselective lipase with broad substrate scope for hydrolysis of α-substituted esters. J Am Chem Soc 132:7038–7042

    Article  Google Scholar 

  11. Liebeton K, Zonta A, Schimossek K, Nardini M, Lang D, Dijkstra BW, Reetz MT, Jaeger KE (2000) Directed evolution of an enantioselective lipase. Chem Biol 7:709–718

    Article  CAS  Google Scholar 

  12. Lang DA, Dijkstra BW (1998) Structural investigations of the regio- and enantioselectivity of lipases. Chem Phys Lipids 93:115–122

    Article  CAS  Google Scholar 

  13. Köhler J, Wünsch B (2007) The allosteric modulation of lipases and it possible biological relevance. Theor Biol Med Model 4:34–54

    Article  Google Scholar 

  14. Hæffner F, Norin T, Hult K (1998) Molecular modeling of the enantioselectivity in lipase catalyzed transesterification reactions. Biophys J 74:1251–1262

    Article  Google Scholar 

  15. Overbeeke PLA, Orrenius SC, Jongejan JA, Duine JA (1998) Enthalpic and entropic contributions to lipase enantioselectivity. Chem Phys Lipids 93:81–93

    Article  CAS  Google Scholar 

  16. Weuster-Botz D (2000) Experimental design for fermentation media development: Statistical design or global random search? J Biosci Bioeng 90:473–483

    CAS  Google Scholar 

  17. Grčić I, Mužic M, Vujević D, Koprivanac N (2009) Evaluation of atrazine degradation in UV/FeZSM-5/H2O2 system using factorial experimental design. Chem Eng J 150:476–484

    Article  Google Scholar 

  18. Design-Expert® software, Version 6 User’s Guide, Stat-Ease, 2000l

  19. Yuan Y, Bai S, Sun Y (2006) Comparison of lipase-catalyzed enantioselective esterification of (±)-menthol in ionic liquids and organic solvent. Food Chem 97:324–330

    Article  CAS  Google Scholar 

  20. Ulbert O, Fráter T, Bélafi-Bakó K, Gubicza L (2004) Enhanced enantioselectivity of Candida rugosa lipase in ionic liquids as compared to organic solvents. J Mol Cat B Enzym 31:39–45

    Article  CAS  Google Scholar 

  21. Eckstein M, Sesing M, Kragl U, Adlercreutz P (2002) Enhanced enantioselectivity of lipase from Pseudomonas sp. at high temperatures and fixed water activity in the ionic liquid 1-butyl-3-methyl bis((trifluoromethyl)sulfonyl)amide. Biotechnol Lett 24:867–872

    Article  CAS  Google Scholar 

  22. Sheldon RA, Lau RM, Sorgedrager MJ, Van Rantwijk F, Seddon KR (2002) Biocatalysis in ionic liquid. Green Chem 4:147–151

    Article  CAS  Google Scholar 

  23. Habulin M, Knez Ž (2009) Optimization of (R, S)-1-phenylethanol kinetic resolution over Candida antarctica lipase B in ionic liquid. J Mol Cat B Enzym 58:24–28

    Article  CAS  Google Scholar 

  24. De Diego T, Lozano P, Abad MA, Steffensky K, Vaultier M, Iborra JL (2009) On the nature of ionic liquids and their effects on lipases that catalyze ester synthesis. J Biotechnol 140:234–241

    Article  Google Scholar 

  25. Bousquet MP, Willemot RM, Monsan P, Boures E (1999) Lipase-catalyzed α-butylglucoside lactate synthesis in organic solvent for dermo-cosmetic application. J Biotechnol 68:61–69

    Article  CAS  Google Scholar 

  26. Kiran KR, Divakar S (2001) Lipase catalyzed synthesis of organic acid esters of lactic acid in non-aqueous media. J Biotechnol 87:109–121

    Article  CAS  Google Scholar 

  27. Jovanović O, Pajin B (2004) Influence of lactic acid ester on chocolate quality. Trends Food Sci Technol 15:128–136

    Article  Google Scholar 

  28. Delgado P, Sanz MT, Beltran S (2007) Kinetic study for esterification of lactic acid with ethanol and hydrolysis of ethyl lactate using an ion-exchange resin catalyst. Chem Eng J 126:111–118

    Article  CAS  Google Scholar 

  29. Pereira CAM, Zabka M, Silva VMTM, Rodrigues AE (2009) A novel process for the ethyl lactate synthesis in a simulated moving bed reactor (SMBR). Chem Eng Sci 64:3301–3310

    Article  CAS  Google Scholar 

  30. Gao J, Zhao XM, Zhou LY, Huang ZH (2007) Investigation of ethyl lactate reactive distillation process. Chem Eng Res Design 85:525–529

    Article  CAS  Google Scholar 

  31. Ohara H, Onogi A, Yamamoto M, Kobayashi S (2010) Lipase-catalyzed oligomerization and hydrolysis of alkyl lactates: direct evidence in the catalysis mechanism that enantioselection is governed by a deacylation step. Biomacromolecules 11:2008–2015

    Article  CAS  Google Scholar 

  32. Data R, Henry M (2006) Lactic acid: recent advances in products, processes and technologies—a review. J Chem Technol Biotechnol 81:1119–1129

    Article  Google Scholar 

  33. Inaba C, Maekawa K, Morisaka H, Kuroda K, Ueda M (2009) Efficient synthesis of enantiomeric ethyl lactate by Candida antarctica lipase B (CALB)-displaying yeasts. Appl Microbiol Biotechnol 83:859–864

    Article  CAS  Google Scholar 

  34. Chahal SP (1990) Lactic acid, Ullman’s Encyclopedia of Industrial Chemistry vol A15, VCH Verlagsgesellschaft, Weincheim

  35. Troupe RA, Dimilla E (1957) Kinetics of the ethyl alcohol–lactic acid reaction. Ind Eng Chem 49:847–855

    Article  CAS  Google Scholar 

  36. Kramer M, Cruz JC, Pfromm PH, Rezac ME, Czermak P (2010) Enantioselective transesterification by Candida antarctica lipase B immobilized on fumed silica. J Biotechnol 150:80–86

    Article  CAS  Google Scholar 

  37. Major B, Németh G, Bélafi-Bakó K, Gubicza L (2010) Unique role of water content in enzymatic synthesis of ethyl lactate using ionic liquid as a solvent. Chem Pap 64(2):261–264

    Article  CAS  Google Scholar 

  38. Chen CS, Wu SH, Girdaukas G, Sih CJ (1987) Quantitative analyses of biochemical kinetic resolution of enantiomers. 2. Enzyme-catalyzed esterifications in water-organic solvent biphasic systems. J Am Chem Soc 109:2812–2817

    Article  CAS  Google Scholar 

  39. Hult K, Norin T (1992) Enantioselectivity of some lipases: Control and prediction. Pure Appl Chem 64(8):1129–1134

    Article  CAS  Google Scholar 

  40. Bovara R, Carrea G, Ottolina G, Riva S (1993) Water activity does not influence the enantioselectivity of lipase PS and lipoprotein lipase in organic solvents. Biotechnol Lett 15:169–174

    Article  Google Scholar 

  41. Wehtje E, Costes D, Adlercreutz P (1993) Enantioselectivity of lipases: effects of water activity. J Mol Cat B Enzym 3:221–230

    Article  Google Scholar 

  42. Persson M, Costes D, Wehtje E, Adlercreutz P (2002) Effect of solvent, water activity and temperature on lipase and hydroxynitrile lyase enantioselectivity. Enzyme Microb Technol 30:916–923

    Article  CAS  Google Scholar 

  43. Montgomery DC (2001) Design and analysis of experiments. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

The research work was supported by the projects TAMOP-4.2.2/B-2010-0025, TAMOP-4.2.2-08/1/2008-0018, “Livable environment and healthier people—Bioinnovation and green technology research at University of Pannonia”, and by the Hungarian Science and Technology Foundation; Hungarian-Croatian cooperation HR 26/2008 and by the Croatian Ministry of Science Education and Sports—Croatian-Hungarian bilateral cooperation project: Study on biotransformations of industrial interest in non-conventional media.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zvjezdana Findrik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Findrik, Z., Németh, G., Gubicza, L. et al. Evaluation of factors influencing the enantioselective enzymatic esterification of lactic acid in ionic liquid. Bioprocess Biosyst Eng 35, 625–635 (2012). https://doi.org/10.1007/s00449-011-0645-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-011-0645-5

Keywords

Navigation