Skip to main content
Log in

A simultaneous saccharification and fermentation model for dynamic growth environments

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Many mathematical models by researchers have been formulated for Saccharomyces cerevisiae which is the common yeast strain used in modern distilleries. A cybernetic model that can account for varying concentrations of glucose, ethanol and organic acids on yeast cell growth dynamics does not exist. A cybernetic model, consisting of 4 reactions and 11 metabolites simulating yeast metabolism, was developed. The effects of variables such as temperature, pH, organic acids, initial inoculum levels and initial glucose concentration were incorporated into the model. Further, substrate and product inhibitions were included. The model simulations over a range of variables agreed with hypothesized trends and to observations from other researchers. Simulations converged to expected results and exhibited continuity in predictions for all ranges of variables simulated. The cybernetic model did not exhibit instability under any conditions simulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

e i :

Concentration of ith enzyme (g/g cell mass) catalyzing reaction r i

r i :

Reaction rate for ith pathway (1/s)

t :

Time (s)

C aa :

Concentration of acetic acid (g/L)

C gy :

Concentration of glycerol (g/L)

D :

Dilution rate (1/s)

E :

Concentration of ethanol (g/L)

EM:

Concentration of energy metabolite precursors (g/L)

G :

Concentration of glucose (g/L)

GA:

Concentration of glucoamylase (g/L)

GP:

Concentration of glucose equivalent of dextrins (g/L)

H :

Heaviside function

K i :

Monod model constants (g/L)

K gp :

Monod model constant in saccharification model (g/L)

K g :

Product inhibition constant in saccharification model (g/L)

K La :

Oxygen mass transfer coefficient (1/s)

O :

Concentration of oxygen (g/L)

O*:

Dissolved oxygen concentration limit (g/L)

P ij :

Concentration for product produced in ith pathway and jth reaction

pH:

Mash/fermenter pH

SM:

Concentration of structural metabolite precursors (g/L)

T :

Mash/fermenter temperature (°C)

V max :

Rate constant in saccharification model (g/L-s)

X :

Concentration of cell mass (g/L)

Y i :

Yield coefficient for ith pathway

\(\alpha_1,\;\alpha_2\) :

Coefficients for production of a unit cell mass from EM and SM in reaction r 3, respectively

α*:

Constant intracellular enzyme synthesis rate (g/L s)

β:

Constant intracellular enzyme breakdown rate (1/s)

η 1 (1/s), η 2 (g/L s), η 3 (g/L s °C), η 4 (g/L s):

Assumed proportionality constants for including the environmental effects

μ i :

Growth rate constant for ith pathway (1/s)

ν:

Cybernetic variable controlling enzyme activity

u :

Cybernetic variable controlling enzyme synthesis

ϕ1 :

Coefficients for production of ethanol in reaction r 1

ϕ2 :

Coefficients for consumption of oxygen in reaction r 4

c:

Complementary pathway

s:

Substitutable pathway

n:

Number of reactions/alternative pathways

References

  1. RFA (2010) Climate of opportunity: ethanol industry outlook 2006. http://www.ethanolrfa.org

  2. Anuradha R, Suresh AK, Venkatesh KV (1999) Simultaneous saccharification and fermentation of starch to lactic acid. Process Biochem 35:367–375

    Article  CAS  Google Scholar 

  3. Roy S, Gudi RD, Venkatesh KV, Shah SS (2001) Optimal control strategies for simultaneous saccharification and fermentation of starch. Process Biochem 36:713–722

    Article  CAS  Google Scholar 

  4. Kroumov AD, Modenes AN, Tait MC (2006) Development of new unstructured model for simultaneous saccharification and fermentation of starch to ethanol by recombinant strain. Biochem Eng J 28:243–255

    Article  CAS  Google Scholar 

  5. Srichuwonga S, Fujiwaraa M, Wanga X, Seyamaa T, Shiromaa R, Arakanea M, Mukojimab N, Tokuyasua K (2009) Simultaneous saccharification and fermentation (ssf) of very high gravity (vhg) potato mash for the production of ethanol. Biomass Bioenergy 33:890–898

    Article  Google Scholar 

  6. Manikandan K, Viruthagiri T (2010) Kinetic and optimization studies on ethanol production from corn flour. Int J Chem Biol Eng 3:65–69

    CAS  Google Scholar 

  7. Murthy GS (2006) Development of a controller for fermentation in the dry grind corn process. Dissertation, Agricultural and Biological Engineering, University of Illinois, Urbana-Champaign, IL

  8. Murthy GS, Singh V (2011) A dynamic optimal controller for control of fermentation processes. US Patent Office, US Patent 7,862,992.:171–180

  9. Russel I (2003) Understanding yeast fundamentals. In: Jacques KA, Lyons TP, Kelsall DR (eds) The alcohol textbook: a reference for the beverage, fuel and industrial alcohol industries, 4th edn. Nottingham University Press, Nottingham, UK, pp 90, 96, 99, 100 and 102

  10. Loureiro V, Van Uden N (1982) Effects of ethanol on the maximum temperature for growth of Saccharomyces cerevisiae: a model. Biotechnol Bioeng 24:1881–1884

    Article  CAS  Google Scholar 

  11. Mager WH, Ferreira PM (1993) Stress response of yeast. Biochem Eng J 290:1–13

    CAS  Google Scholar 

  12. Thatipamala R, Rohani S, Hill GA (1992) Effects of high product and substrate inhibitions on the kinetics and biomass and product yields during ethanol batch fermentation. Biotechnol Bioeng 40:289–297

    Article  CAS  Google Scholar 

  13. Narendranath NV, Hynes SH, Thomas KC, Ingledew WM (1997) Effects of Lactobacilli on yeast catalyzed ethanol fermentations. Appl Environ Microbiol 63:4158–4163

    CAS  Google Scholar 

  14. Narendranath NV, Thomas KC, Ingledew WM (2001) Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium. J Ind Microbiol Biotechnol 26:171–177

    Article  CAS  Google Scholar 

  15. Bayrock DP, Ingledew WM (2004) Inhibition of yeast by lactic acid bacteria in continuous culture: nutrition depletion and/or acid toxicity?. J Ind Microbiol Biotechnol 31:362–368

    Article  CAS  Google Scholar 

  16. Bailey JE, Ollis DF (1986) Biochemical engineering fundamentals, 2nd edn. McGraw Hill, Singapore

  17. Straight JV, Ramakrishna D (1994) Cybernetic modeling and regulation of metabolic pathways. Growth on complementary nutrients. Biotechnol Progr 10:574–587

    Article  CAS  Google Scholar 

  18. Jones KD, Kompala DS (1999) Cybernetic model of the growth dynamics of Saccharomyces cerevisiae in batch and continuous cultures. J Biotechnol 71:105–131

    Article  CAS  Google Scholar 

  19. Verduyn C, Postma E, Scheffers WA, van Dijken JP (1990) Energetics of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J Gen Microbiol 136:405–412

    CAS  Google Scholar 

  20. Duarte NC, Herrgård MJ, Palsson BØ (2004) Reconstruction and validation of saccharomyces cerevisiae ind750, a fully compartmentalized genome-scale metabolic model. Genome Res 14:1298–1309

    Article  CAS  Google Scholar 

  21. Nagodawithana TW, Catellano C, Steinkraus KH (1974) Effect of dissolved oxygen, temperature, initial cell count, and sugar concentration on viability of Saccharomyces cerevisiae in rapid fermentations. Appl Microbiol 28:383–391

    CAS  Google Scholar 

  22. Thomas KC, Hynes SH, Jones AM, Ingledew WM (1993) Production of fuel alcohol from wheat by vhg technology: Effect of sugar concentration and fermentation temperature. Appl Biochem Biotechnol 43:221–226

    Article  Google Scholar 

  23. Verduyn C, Postma E, Scheffers WA, van Dijken JP (1990) Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J Gen Microbiol 136:395–403

    CAS  Google Scholar 

  24. AACC (2002) Method 44-15A. Approved methods of the AACC, 10th edn. The Association, St. Paul, MN

  25. Pampulha ME, Loureiro-Dias MC (1989) Combined effect of acetic acid, pH and ethanol on intracellular pH of fermenting yeast. Appl Microbiol Biotechnol 31:547–550

    Article  CAS  Google Scholar 

  26. Liu Y, Liu Q, Tay J (2005) Initial conditions-dependent growth kinetics in microbial batch culture. Process Biochem 40:155–160

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Singh.

A. Model summary

A. Model summary

A.1 Cybernetic control equations

$$\begin{aligned} r_1&=\mu_1 e_1\left(\frac{G}{K_1+G}\right)\left(1-{\rm {\sc H}}_{G,150}\left(\frac{G-150}{650-150}\right)\right) \\ &\quad \times \left(1-{\rm {\sc H}}_{E,95}\left(\frac{E-95}{150-95}\right)\right) \\ r_2&=\mu_2 e_2\left(\frac{G}{K_2+G}\right)\left(1-{\rm {\sc H}}_{G,150}\left(\frac{G-150}{650-150}\right)\right) \\ &\quad \times \left(1-{\rm {\sc H}}_{E,95}\left(\frac{E-95}{150-95}\right)\right) \\ r_3&=\mu_3 e_3\left(\frac{{\rm EM}}{K_3+{\rm EM}}\right)\left(\frac{{\rm SM}}{K_4+{\rm SM}}\right) \\ r_4&=\mu_4 e_4\left(\frac{G}{K_1+G}\right)\left(\frac{O}{K_5+O}\right) \\ & & \\ {\rm {\sc H}}_{a,b} & = \left\{\begin{array}{rll} 1 & \hbox{if} & a > b \;\;\hbox{\linebreak is the Heaviside function.} \\ 0 & \hbox{if} & a\le b\\ \end{array} \right. \\ \nu^{\prime}_{1} & = \left(\frac{r_1}{\hbox{Max}\left(r_1,r_4\right)}\right)\;\;\;\;\; \leftarrow \hbox{for substitutable pathway $r_1, r_4$} \\ \nu^{\prime\prime}_{1} & = \left(\frac{r_1/{\rm EM}}{\hbox{Max}\left(r_1/{\rm EM},r_2/{\rm SM}\right)}\right)\;\;\;\;\; \leftarrow \hbox{for complementary pathway $r_1, r_2$} \\ \nu_{1} & = \nu^{\prime}_{1}\nu^{\prime\prime}_{1}\;\; \leftarrow \hbox{overall regulation for substitutable and complementary pathways $r_1$} \\ \nu_{2}& = \left(\frac{r_2/{\rm SM}}{\hbox{Max}\left(r_1/{\rm EM},r_2/{\rm SM}\right)}\right)\;\;\;\;\; \leftarrow \hbox{for complementary pathway $r_2, r_1$} \\ \nu_{3} & = 1 \;\;\;\;\; \leftarrow \hbox{for pathway $r_3$} \\ \nu_{4} & = \left(\frac{r_4}{\hbox{Max}(r_1,r_4)}\right)\;\;\;\;\; \leftarrow \hbox{for substitutable pathway $r_4, r_1$} \\ u^{\prime}_{1} & = \left(\frac{r_1}{r_1+r_4}\right)\;\;\;\;\;\;\; \leftarrow \hbox{for substitutable pathway $r_1, r_4$} \\ u^{\prime\prime}_{1}& = \left(\frac{r_1/{\rm EM}}{r_1/{\rm EM}+r_2/{\rm SM}}\right)\;\;\;\;\;\;\; \leftarrow \hbox{for complementary pathway $r_1, r_2$} \\ u_{1} & = u^{\prime}_{1}u^{\prime\prime}_{1}\;\;\;\;\;\;\; \leftarrow \hbox{overall regulation for both pathways $r_1$} \\ u_{2} & = \left(\frac{r_2/{\rm SM}}{r_1/{\rm EM}+r_2/{\rm SM}}\right)\;\;\;\;\;\;\; \leftarrow \hbox{for complementary pathway $r_2, r_1$} \\ u_{3} & = 1 \;\;\;\;\;\;\; \leftarrow \hbox{for pathway $r_3$} \\ u_{4} & = \left(\frac{r_4}{r_1+r_4}\right)\;\;\;\;\;\;\; \leftarrow \hbox{for substitutable pathway $r_4, r_1$} \\ \end{aligned}$$

A.2 Dynamic mass balance equations

$$ \begin{aligned} \hbox{Saccharification:}\;\;\;\frac{{\rm d}{\rm GP}}{{\rm d}t} & = \left({\rm GP}_0-{\rm GP}\right)D+\left(\frac{V_{{\rm max}}{\rm GP}}{K_{{\rm gp}}+{\rm GP}+K_gG}\right) \\ & \quad \times {\rm GA}.{\rm GA}_{\rm Activity}\left(0.874{\rm pH}^3-9.709{\rm pH}^2-2.734{\,\rm pH}+203.088 \right)0.01 \\ \hbox{Cell mass:}\;\;\;\frac{{\rm d}X}{{\rm d}t} & = \left(r_3-D\right)X+0.1212\;\eta_3\left({\frac{T-15}{30-15}}\right) \\ & \quad -\eta_4\left({\rm {\sc H}}_{T,33}{\rm e}^{\left({\frac{T-33}{41-33}}\right)}\right)-{\rm {\sc H}}_{C_{{\rm aa}},5}{\rm {\sc H}}_{4.71,{\rm pH}}0.05 \\ \hbox{Glucose:}\;\;\;\frac{{\rm d}G}{{\rm d}t} & = \;{\rm {\sc H}}_{{\rm GP},0}\;\frac{{\rm d}{\rm GP}}{{\rm d}t}-\left(\frac{r_1\;\nu_1}{Y_1}+\frac{r_2\;\nu_2}{Y_2}+\frac{r_4\;\nu_4}{Y_3}\right)X+\left(G_0-G\right)D \\ \hbox{Ethanol:}\;\;\;\frac{{\rm d}E}{{\rm d}t} & = \left(\phi_1\;\frac{r_1\;\nu_1}{Y_1}\right)X-E.D \\ \hbox{Oxygen:}\;\;\;\frac{{\rm d}O}{{\rm d}t} & = -\left(\phi_2\;\frac{r_4\;\nu_4}{Y_3}\right)X\;+\;\left(K_{{\rm La}} O^*-D.O\right) \\ \hbox{Energy precursors:}\;\;\;\frac{{\rm d}{\rm EM}}{{\rm d}t} & = \left(r_1\;\nu_1+r_4\;\nu_4-\frac{r_3\;\nu_3}{\alpha_1}\right)\;X-\eta_1\left(\frac{1229.56\;C_{{\rm aa}}}{10^{{\rm pH}-4.71}+1}\right)-EM.D \\ \hbox{Structural precursors:}\;\;\;\frac{{\rm d}{\rm SM}}{{\rm d}t} & = \left(r_2\;\nu_2-\frac{r_3\;\nu_3}{\alpha_2}\right)\;X -\eta_2{\rm {\sc H}}_{{\rm pH},5.0}(0.725{\rm pH})-{\rm SM}.D \\ \hbox{Enzyme 1 for pathway $r_1$:}\;\;\;\frac{{\rm d}e_1}{{\rm d}t} & = u_1\left(\frac{G}{K_1+G}\right)-e_1\;\beta + \alpha^\ast -e_1.D \\ \hbox{Enzyme 2 for pathway $r_2$:}\;\;\;\frac{{\rm d}e_2}{{\rm d}t} & = u_2\left(\frac{G}{K_2+G}\right)-e_2\;\beta + \alpha^\ast -e_2.D \\ \hbox{Enzyme 3 for pathway $r_3$:}\;\;\;\frac{{\rm d}e_3}{{\rm d}t} & = u_3\left(\frac{{\rm EM}}{K_3+{\rm EM}}\right)\left(\frac{{\rm SM}}{K_4+{\rm SM}}\right)-e_3\;\beta + \alpha^\ast -e_3.D \\ \hbox{Enzyme 4 for pathway $r_4$:}\;\;\;\frac{{\rm d}e_4}{{\rm d}t} & = u_4\left(\frac{G}{K_1+G}\right)\left(\frac{O}{K_5+O}\right)-e_4\;\beta + \alpha^\ast -e_4.D \\ \hbox{Acetic acid:}\;\;\;\frac{{\rm d}C_{{\rm aa}}}{{\rm d}t} & = -D.C_{{\rm aa}} \\ & \quad +\left({\rm {\sc H}}_{5.0,{\rm pH}}(0.1056) +{\rm {\sc H}}_{{\rm pH},5.0}\left(0.0533{\rm pH}-0.1782\right)\right)\frac{{\rm d}X}{{\rm d}t} \\ \hbox{Glycerol:}\;\;\;\frac{{\rm d}C_{{\rm gy}}}{{\rm d}t} & = -D.C_{{\rm gy}} \\ & \quad +\left({\rm {\sc H}}_{5.0,{\rm pH}}(4.018)+{\rm {\sc H}}_{{\rm pH},5.0}\left(0.416{\rm pH}-1.40\right)\right)\frac{{\rm d}X}{{\rm d}t} \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murthy, G.S., Johnston, D.B., Rausch, K.D. et al. A simultaneous saccharification and fermentation model for dynamic growth environments. Bioprocess Biosyst Eng 35, 519–534 (2012). https://doi.org/10.1007/s00449-011-0625-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-011-0625-9

Keywords

Navigation