Bioprocess and Biosystems Engineering

, Volume 35, Issue 1–2, pp 11–18 | Cite as

Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica

  • Ji-Suk Jang
  • YuKyeong Cho
  • Gwi-Taek Jeong
  • Sung-Koo KimEmail author
Original Paper


Ethanol was produced using the simultaneous saccharification and fermentation (SSF) method with macroalgae polysaccharide from the seaweed Saccharina japonica (Sea tangle, Dasima) as biomass. The seaweed was dried by hot air, ground with a hammer mill and filtered with a 200-mesh sieve prior to pretreatment. Saccharification was carried out by thermal acid hydrolysis with H2SO4 and the industrial enzyme, Termamyl 120 L. To increase the yield of saccharification, isolated marine bacteria were used; the optimal saccharification conditions were 10% (w/v) seaweed slurry, 40 mM H2SO4 and 1 g dcw/L isolated Bacillus sp. JS-1. Using this saccharification procedure, the reducing sugar concentration and viscosity were 45.6 ± 5.0 g/L and 24.9 cp, respectively, and the total yield of the saccharification with optimal conditions and S. japonica was 69.1%. Simultaneous saccharification and fermentation was carried out for ethanol production. The highest ethanol concentration, 7.7 g/L (9.8 ml/L) with a theoretical yield of 33.3%, was obtained by SSF with 0.39 g dcw/L Bacillus sp. JS-1 and 0.45 g dcw/L of the yeast, Pichia angophorae KCTC 17574.


Ethanol Seaweed Saccharina japonica Thermal acid hydrolysis Saccharification Pichia angophorae 



This research was supported by a grant from the Development of Marine-Bioenergy Program Funded by the Ministry of Land, Transport and Maritime Affairs of the Korean Government. Ji-Suk Jang and YuKyeong Cho were financially supported by the Brain Busan 21 HRD Project of the Metropolitan City of Busan.


  1. 1.
    Cazetta M, Celligoi M, Buzato J, Scarmino I (2007) Fermentation of molasses by Zymomonas mobilis: effects of temperature and sugar concentration on ethanol production. Bioresour Technol 98(15):2824–2828CrossRefGoogle Scholar
  2. 2.
    Davis L, Jeon Y, Svenson C, Rogers P, Pearce J, Peiris P (2005) Evaluation of wheat stillage for ethanol production by recombinant Zymomonas mobilis. Biomass Bioenergy 29(1):49–59CrossRefGoogle Scholar
  3. 3.
    Berndes G, Hoogwijk M, van den Broek R (2003) The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass Bioenergy 25(1):1–28CrossRefGoogle Scholar
  4. 4.
    Karakashev D, Thomsen A, Angelidaki I (2007) Anaerobic biotechnological approaches for production of liquid energy carriers from biomass. Biotechnol Lett 29(7):1005–1012CrossRefGoogle Scholar
  5. 5.
    Bothast R, Schlicher M (2005) Biotechnological processes for conversion of corn into ethanol. J Appl Microbiol Biotechnol 67(1):19–25CrossRefGoogle Scholar
  6. 6.
    Lu X, Zhang Y, Angelidaki I (2009) Optimization of H2SO4-catalyzed hydrothermal pretreatment of rapeseed straw for bioconversion to ethanol: focusing on pretreatment at high solids content. Bioresour Technol 100(12):3048–3053CrossRefGoogle Scholar
  7. 7.
    Adams J, Gallagher J, Donnison I (2009) Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. J Appl Phycol 21(5):569–574CrossRefGoogle Scholar
  8. 8.
    McHugh DJ (2003) A guide to the seaweed industry. FAO Fish Tech PapGoogle Scholar
  9. 9.
    Horn S, Aasen I, Østgaard K (2000) Ethanol production from seaweed extract. J Ind Microbiol 25(5):249–254CrossRefGoogle Scholar
  10. 10.
    Horn S, Aasen I, Østgaard K (2000) Production of ethanol from mannitol by Zymobacter palmae. J Ind Microbiol Biotechnol 24(1):51–57CrossRefGoogle Scholar
  11. 11.
    Tang JC, Taniguchi H, Chu H, Zhou Q, Nagata S (2009) Isolation and characterization of alginate-degrading bacteria for disposal of seaweed wastes. Lett Appl Microbiol 48(1):38–43CrossRefGoogle Scholar
  12. 12.
    Choi DB, Sim HS, Piao YL, Ying W, Cho H (2009) Sugar production from raw seaweed using the enzyme method. J Ind Eng Chem 15:12–15CrossRefGoogle Scholar
  13. 13.
    Kloareg B, Quatrano R (1988) Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides. Oceanogr Mar Biol Annu Rev 26:259–315Google Scholar
  14. 14.
    Myklestad S (1978) Beta-1, 3-glucans in diatoms and brown seaweeds, Handbook of phycological methods. Cambridge University Press, Cambridge, UKGoogle Scholar
  15. 15.
    Kuhad R, Gupta R, Khasa Y, Singh A (2010) Bioethanol production from Lantana camara (red sage): Pretreatment, saccharification and fermentation. Bioresour Technol 101:8348–8354CrossRefGoogle Scholar
  16. 16.
    Tomas-Pejo E, Garcia-Aparicio M, Negro M, Oliva J, Ballesteros M (2009) Effect of different cellulase dosages on cell viability and ethanol production by Kluyveromyces marxianus in SSF processes. Bioresour Technol 100(2):890–895CrossRefGoogle Scholar
  17. 17.
    Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11CrossRefGoogle Scholar
  18. 18.
    Na JB, Kim JS (2008) The optimum condition of SSF to ethanol production from starch biomass. Korean Chem Eng Res 46(5):858–862Google Scholar
  19. 19.
    Stenberg K, Bollok M, Reczey K, Galbe M, Zacchi G (2000) Effect of substrate and cellulase concentration on simultaneous saccharification and fermentation of steam-pretreated softwood for ethanol production. Biotechnol Bioeng 68(2):204–210CrossRefGoogle Scholar
  20. 20.
    Alfani F, Gallifuoco A, Saporosi A, Spera A, Cantarella M (2000) Comparison of SHF and SSF processes for the bioconversion of steam-exploded wheat straw. J Ind Microbiol Biotechnol 25(4):184–192CrossRefGoogle Scholar
  21. 21.
    Wingren A, Galbe M, Zacchi G (2003) Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks. Biotechnol Prog 19(4):1109–1117CrossRefGoogle Scholar
  22. 22.
    Wei G, Gao W, Jin I, Yoo S, Lee J, Chung C, Lee J (2009) Pretreatment and saccharification of rice hulls for the production of fermentable sugars. Biotechnol Bioprocess Eng 14(6):828–834CrossRefGoogle Scholar
  23. 23.
    Tomas-Pejo E, Oliva J, Gonzalez A, Ballesteros I, Ballesteros M (2009) Bioethanol production from wheat straw by the thermotolerant yeast Kluyveromyces marxianus CETC 10875 in a simultaneous saccharification and fermentation fed-batch process. Fuel 88:2142–2147CrossRefGoogle Scholar
  24. 24.
    Lee S, Kim J, Cho H, Joo H, Lee J (2009) Production of bio-ethanol from brown algae by physicochemical hydrolysis. J Korean Ind Eng Chem 20(5):517–521Google Scholar
  25. 25.
    Lee S, Lee J (2010) Influence of acid and salt content on the ethanol production from Laminaria japonica. Appl Chem Eng 21(2):154–161Google Scholar
  26. 26.
    Dubois M, Gilles K, Hamilton J, Rebers P, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Biochem 28(3):350–356Google Scholar
  27. 27.
    Zacchi G, Axelsson A (1989) Economic evaluation of preconcentration in production of ethanol from dilute sugar solutions. Biotechnol Bioeng 34(2):223–233CrossRefGoogle Scholar
  28. 28.
    Li H, Kim N, Jiang M, Kang J, Chang H (2009) Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid-acetone for bioethanol production. Bioresour Technol 100(13):3245–3251CrossRefGoogle Scholar
  29. 29.
    Horn S (2000) Bioenergy from brown seaweeds. Norwegian University of Science and Technology NTNU, TrondheimGoogle Scholar
  30. 30.
    Horn S, Østgaard K (2001) Alginate lyase activity and acidogenesis during fermentation of Laminaria hyperborea. J Appl Phycol 13(2):143–152CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Ji-Suk Jang
    • 1
  • YuKyeong Cho
    • 1
  • Gwi-Taek Jeong
    • 1
  • Sung-Koo Kim
    • 1
    Email author
  1. 1.Department of BiotechnologyPukyong National UniversityBusanKorea

Personalised recommendations