Skip to main content

Advertisement

Log in

Physiological studies on microalgal culture additives to optimize growth rate and oil content

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Insulin, in nature, has a stimulatory effect on microorganisms. These effects include the acceleration of sugar metabolism, triacylglycerol anabolism, growth rate, and formation of oils. We also observed that insulin may cause indirect activation of triacylglycerol lipase by forcing the cell to permanently require an energy source. Thus, cells can consume all of their accumulated internal fuel sources such as lipids, proteins, and carbohydrates. After studying the effects of using two types of insulin (Humulin 70/30, and human insulin expressed in yeast) at different concentrations on microalgae (Chlorella sp.), we found that with certain concentrations of insulin (1:3.3 ml unit Humulin 70/30 per ml; 1:2.6 ml unit yeast insulin per ml), there was an increase in algal growth rate and decrease in cell size. We therefore studied the effect of insulin under conditions of lipase inhibition by Triton WR 1339 (Tyloxapol), which was used at different concentrations with and without insulin. We found strong regression in the growth rate with increasing Triton concentrations. However, we also observed that the cell size under the effect of Triton and Triton-insulin was larger than the cell size under the effect of insulin alone, and also larger than for control cells. Also, the oil content of the Triton-insulin cells was higher than those of the control cells or the cells under the effect of insulin alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Deffeyes KS (2008) Hubbert’s peak: the impending world oil shortage, 3rd edn. Princeton University Press, Princeton University, NJ, USA, pp 159–186

    Google Scholar 

  2. Bentley R (2002) Glibal oil & gas depletion: an overview. Energy Policy 30:189–205

    Article  Google Scholar 

  3. Barasanti L, Gualtieri P (2006) Algae anatomy, biochemistry and biotechnology. CRC Press, Taylor and Francis Group, Broken Sound Parkway, pp 226–227

    Google Scholar 

  4. Qian J, Shi H, Yun Z (2010) Preparation of biodiesel from Jatropha curcas L. oil produced by two-phase solvent extraction. Bioresour Technol 101:7025–7031

    Article  CAS  Google Scholar 

  5. Chen C, Chen W, Chang C, Lai S, Tu C (2010) Biodiesel production from supercritical carbon dioxide extracted Jatropha oil using subcritical hydrolysis and supercritical methylation. J Supercrit Fluids 52:228–234

    Article  CAS  Google Scholar 

  6. Lu H, Liu Y, Zhou H, Yang Y, Chen M, Liang B (2009) Production of biodiesel from Jatropha curcas L. oil. Comput Chem Eng 33:1091–1096

    Article  CAS  Google Scholar 

  7. Canoira L, Alcantara R, Garcia-Martinez M, Carrasco J (2006) Biodiesel from Jojoba oil-wax: Transesterification with methanol and properties as a fuel. Biomass Bioenerg 30:76–81

    Article  CAS  Google Scholar 

  8. Al-Widyan M, Al-Muhtaseb M (2010) Experimental investigation of jojoba as a renewable energy source. Energy Convers Manag 51:1702–1707

    Article  CAS  Google Scholar 

  9. Teixeira L, Couto M, Souza G, Filho M, Assis J, Guimaraes P, Pontes L, Almeida S, Teixeira J (2010) Characterization of beef tallow biodiesel and their mixtures with soybean biodiesel and mineral diesel fuel. Biomass Bioenerg 34:438–441

    Article  CAS  Google Scholar 

  10. Qiu F, Li Y, Yang D, Li X, Sun P (2011) Biodiesel production from mixed soybean oil and rapeseed oil. Appl Energy 88:2050–2055

    Article  CAS  Google Scholar 

  11. Qi D, Geng L, Chen H, Bian Y, Liu J, Ren X (2009) Combustion and performance evaluation of a diesel engine fueled with biodiesel produced from soybean crude oil. Renew Energy 34:2706–2713

    Article  CAS  Google Scholar 

  12. Silva C, Ribeiro N, Souza M, Aranda D (2010) Biodiesel production from soybean oil and methanol using hydrotalcites as catalyst. Fuel Process Technol 91:205–210

    Article  CAS  Google Scholar 

  13. Bi Y, Ding D, Wang D (2010) Low-melting-point biodiesel derived from corn oil via urea complexation. Bioresour Technol 101:1220–1226

    Article  CAS  Google Scholar 

  14. Dantas M, Albuquerque A, Barros A, Rodrigues Filho M, Antoniosi Filho N, Sinfrônio F, Rosenhaim R, Soledade L, Santos I, Souza A (2011) Evaluation of the oxidative stability of corn biodiesel. Fuel 90:773–778

    Article  CAS  Google Scholar 

  15. Lozada I, Islas J, Grande G (2010) Environmental and economic feasibility of palm oil biodiesel in the Mexican transportation sector. Renew Sustain Energy Rev 14:486–492

    Article  CAS  Google Scholar 

  16. Hayyan A, Alam M, Mirghani M, Kabbashi N, Hakimi N, Siran Y, Tahiruddin S (2010) Sludge palm oil as a renewable raw material for biodiesel production by two-step processes. Bioresour Technol 101:7804–7811

    Article  CAS  Google Scholar 

  17. Maceiras R, Rodrıguez M, Cancela A, Urréjola S, Sanchez A (2010) Macroalgae: raw material for biodiesel production. Appl Energy (in press, corrected proof)

  18. Demirbas A, Demirbas M (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manag 52:163–170

    Article  Google Scholar 

  19. Lu X, Vora H, Khosla C (2008) Over production of free fatty acids in E. coli: implications for biodiesel production. Metab Eng 10:333–339

    Article  CAS  Google Scholar 

  20. Sergeeva Y, Galanina L, Andrianova D, Feofilova E (2008) Lipids of filamentous fungi as a material for producing biodiesel fuel. Appl Biochem Microbiol 5(44):523–527

    Article  Google Scholar 

  21. Vicente G, Bautista L, Rodriguez R, Gutiérrez F, Sadaba I, Ruiz-Vázquez R, Torres-Martinez S, Garre V (2009) Biodiesel production from biomass of an oleaginous fungus. Biochem Eng J 48:22–27

    Article  CAS  Google Scholar 

  22. Li Q, Zheng L, Cai H, Garza E, Yu Z, Zhou S (2011) from organic waste to biodiesel: black soldier fly, Hermetia illucens, makes it feasible. Fuel 90:1545–1548

    Article  CAS  Google Scholar 

  23. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  Google Scholar 

  24. Deng X, Li Y, Fei X (2009) Microalgae: a promising feedstock for biodiesel. Afr J Microbiol Res 3(13):1008–1014

    CAS  Google Scholar 

  25. Kalscheuer R, Stolting T, Steinbuchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152:2529–2536

    Article  CAS  Google Scholar 

  26. Yoo C, Jun S, Lee J, Ahn C, Oh H (2010) Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour Technol 101:S71–S74

    Article  CAS  Google Scholar 

  27. Lin Q, Lin J (2011) Effects of nitrogen source and concentration on biomass and oil production of a Scenedesmus rubescens like microalga. Bioresour Technol 102:1615–1621

    Article  CAS  Google Scholar 

  28. Widjaja A, Chien C, Ju Y (2009) Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Inst Chem Eng 40:13–20

    Article  CAS  Google Scholar 

  29. Yeesang C, Cheirsilp B (2011) Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresour Technol 102:3034–3040

    Article  CAS  Google Scholar 

  30. Chen M, Tang H, Ma H, Holland T, Ng K, Salley S (2011) Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresour Technol 102:1649–1655

    Article  CAS  Google Scholar 

  31. Khozin-Goldberg I, Cohen Z (2006) The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry 67:696–701

    Article  CAS  Google Scholar 

  32. Hsieh C, Wu W (2009) Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour Technol 100:3921–3926

    Article  CAS  Google Scholar 

  33. Takagi M, Karseno, Yoshida T (2006) Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella Cells. J Biosci Bioeng 3(101):223–226

  34. Gardner R, Peters P, Peyton B, Cooksey K (2010) Medium pH and nitrate concentration effects on accumulation of triacylglycerol in two members of the chlorophyta. J Appl Phycol 1–2. doi:10.1007/s10811-010-9633-4

  35. Mercado J, Sánchez-Saavedra M, Correa-Reyes G, Lubián L, Montero O, Figueroa F (2004) Blue light effect on growth, light absorption characteristics and photosynthesis of five benthic diatom strains. Aquat Bot 78:265–277

    Article  Google Scholar 

  36. Das P, Lei W, Aziz S, Obbard J (2011) Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresour Technol 102:3883–3887

    Article  CAS  Google Scholar 

  37. Glover H, Keller M, Spinrad R (1987) The effects of light quality and intensity on photosynthesis and growth of marine eukaryotic and prokaryotic phytoplankton clones. J Exp Mar Biol Ecol 105:137–159

    Article  Google Scholar 

  38. Rosenberg J, Oyler G, Wilkinson L, Betenbaugh M (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol 19:430–436

    Article  CAS  Google Scholar 

  39. Tabatabaei M, Tohidfar M, Jouzani G, Safarnejad M, Pazouki M (2011) Biodiesel production from genetically engineered microalgae: future of bioenergy in Iran. Renew Sustain Energy Rev 15:1918–1927

    Article  CAS  Google Scholar 

  40. Huang G, Chen F, Wei D, Zhang X, Chen G (2009) Biodiesel production by microalgal biotechnology. Appl Energy 87:38–46

    Article  Google Scholar 

  41. Hayashi H, Niinobe S, Matsumoto Y, Suga T (1981) Effects of Triton WR-1339 on lipoprotein lipolytic activity and lipid content of rat liver lysosomes. J Biochem 89:573–579

    CAS  Google Scholar 

  42. Hemief D, Hales P, Brindley D (1991) Effects of the lipase inhibitors, Triton WR-1339 and tetrahydrolipstatin, on the synthesis and secretion of lipids by rat hepatocytes. FEBS Lett 286:186–188

    Article  Google Scholar 

  43. Lehninger A, Nelson D, Cox M (2004) Lehninger principles of biochemistry, 4th edn. W. H. Freeman and company, NY, USA, p 904

    Google Scholar 

  44. Plotkin B, Viselli S (2000) Effect of insulin on microbial growth. Curr Microbiol 41:60–64

    Article  CAS  Google Scholar 

  45. Zhu S, Lai D, Li S, Lun Z (2006) Stimulative effects of insulin on Toxoplasma gondii replication in 3T3-L1cells. Cell Biol Int 30:149–153

    Article  CAS  Google Scholar 

  46. McKenzie MA, Fawell SE, Cha A, Lenard J (1988) Effect of mammalian insulin on metabolism, growth and morphology of a wall-less strain of Neurospora crassa. Endocrinology 122:511–517

    Article  CAS  Google Scholar 

  47. Mirsky N, Berdicevsky I (1994) Effects of insulin and glucose tolerance factor on glucose uptake by yeast cells. Biol Signals 3(6):271–277

    Article  CAS  Google Scholar 

  48. Emmison N, Zammit V, Agius L (1992) Triacylglycerol accumulation and secretion in hepatocyte cultures. Biochem J 285:655–660

    CAS  Google Scholar 

  49. Berdicevsky I, Mirsky N (1994) Effect of insulin and glucose tolerance factor (GTF) on growth of Sccharomyces cerevisiae. Mycoses 37:405–410

    Article  CAS  Google Scholar 

  50. Legros F, Uytdenhoef P, Dumont I, Hanson B, Jeanmart J, Massant B, Conard V (1975) Specific binding of insulin to the unicellular algae Acetabularia mediterranea. Protoplasma 86:119–134

    Article  CAS  Google Scholar 

  51. Csaba G, Bierbauer J (1974) Investigation on the specificity of hormone receptors in Planarians. Gen Comp Endocr 22:132–134

    Article  CAS  Google Scholar 

  52. Casba G, Lantos T (1973) Effect of hormones on protozoa: Studies on the phagocytic effect of histamine, 5-hydroxytryptamine and indoleacetic acid in Tetrahymena pyriformis. Cytobiology 7:361–365

    Google Scholar 

  53. Courchesne N, Parisien A, Wang B, Lan C (2009) Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J Biotechnol 141:31–41

    Article  CAS  Google Scholar 

  54. Ballinger A, Peikin S (2002) Orlistat: its current status as an anti-obesity drug. Eur J Pharmacol 440:109–117

    Article  CAS  Google Scholar 

  55. Guerciolini R (1997) Mode of action of orlistat. Int J Obes Relat Metab Disord 21(3):S12–S23

    CAS  Google Scholar 

  56. Heck AM, Yanovski JA, Calis KA (2000) Orlistat, a new lipase inhibitor for the management of obesity. pharmacotherapy 20(3):270–279

  57. Lee IA, Min S, Kim D (2006) Lactic acid bacteria increases hypolipidemic effect of crocin isolated from fructus of Gardenia jasminoides. J Microbiol Biotechnol 16(7):1084–1089

    CAS  Google Scholar 

  58. Ansarullah, Jadeja RN, Thounaojam MC, Patel V, Devkar RV, Ramachandran AV (2009) Antihyperlipidemic potential of a polyherbal preparation on Triton WR 1339 (Tyloxapol) induced hyperlipidemia: a comparison with lovastatin. Int J Green Pharm 2(3):119–124

    Google Scholar 

  59. Bertges L, Mourão C Jr, Souza J, Cardoso V (2010) Hyperlipidemia induced by Triton WR1339 (Tyloxapol) in Wistar rats. Rev Bras Cien Med Saúde 1(1):40–42

    Google Scholar 

  60. Hubalek Z (2003) Protectants used in the cryopreservation of microorganisms. Cryobiology 46:205–229

    Article  CAS  Google Scholar 

  61. Hemert PA (1971) Vaccine production as a unit process. PhD Thesis. Technische Hogeschool te Delft, Delft, The Netherlands

  62. Dietrich G, Viret J, Hess J (2003) Mycobacterium bovis BCG-based vaccines against tuberculosis: novel developments. Vaccine 21:667–670

    Article  CAS  Google Scholar 

  63. Lorian V (1996) Direct cord reading medium for isolation of mycobacteria. Appl Microbiol 4(14):603–607

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Mi Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomaa, A.E., Hafez, E.E., Lim, H.S. et al. Physiological studies on microalgal culture additives to optimize growth rate and oil content. Bioprocess Biosyst Eng 35, 135–143 (2012). https://doi.org/10.1007/s00449-011-0596-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-011-0596-x

Keywords