Skip to main content

Column bioleaching of low-grade mining ore containing high level of smithsonite, talc, sphaerocobaltite and azurite

Abstract

Present work describes the bioleaching potential of metals from low-grade mining ore containing smithsonite, sphaerocobaltite, azurite and talc as main gangue minerals with adapted consortium of Sulfobacillus thermosulfidooxidans strain-RDB and Thermoplasma acidophilum. Bioleaching potential improved markedly by added energy source, acid preleaching and adaptation of microbial consortium with mixed metal ions. During whole leaching period including acid preleaching stage of 960 h and bioleaching stage of 212 days about 76% Co, 70% Zn, 84% Cu, 72% Ni and 63% Fe leached out.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Bosecker K (1985) Leaching of lateritic nickel ores with heterotrophic microorganisms, Proceedings of the sixth international symposium on biohydrometallurgy. Fund. Appl. Biohydrometal. Vancouver, B.C., Canada, pp 367–382

  2. Tzeferis PG, Agatzinin LS (1994) Leaching of nickel and iron from Greek non-sulphide nickeliferous ores by organic acids. Hydrometallurgy 36:345–360

    Article  CAS  Google Scholar 

  3. Valix M, Usai F, Malik V (2000) Fungal bioleaching of low grade laterite ores. Miner Eng 14:197–203

    Article  Google Scholar 

  4. Valix M, Usai F, Malik V (2000) The electra-sorption properties of nickel on laterite gangue leached with an organic chelating acid. Miner Eng 14:205–215

    Article  Google Scholar 

  5. Ilyas S, Anwar MA, Niazi SB, Ghauri MA, Khalid AM (2007) Microbial leaching of iron from pyrite by moderate thermophile chemolithotrophic bacteria. J Res Sci 18:159–166

    Google Scholar 

  6. Devasia P, Natarajan KA (2004) Bacterial leaching: biotechnology in mining industry. Resonance 27–34

  7. Pradhan N, Das B, Gahan CS, Kar RN, Sukla LB (2006) Beneficiation of iron ore slime using Aspergillus niger and Bacillus circulans. Bioresour Technol 97:1876–1879

    Article  CAS  Google Scholar 

  8. Rawlings DE (2004) Microbially assisted dissolution of minerals and its use in the mining industry. Pure Appl Chem 76:847–859

    Article  CAS  Google Scholar 

  9. http://www.chinamining.org/Facts/2006-09-28/1159425021d1392.html, bulletin, China mining. 28 September (2006)

  10. Rossi G (1990) Biohydrometallurgy. McGraw-Hill Book Company, New York

    Google Scholar 

  11. Olson GJ, Brierley JA, Brierley CL (2003) Bioleaching review part B: progress in bioleaching: applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol 63:249–257

    Article  CAS  Google Scholar 

  12. Ilyas S, Anwar MA, Niazi SB, Ghauri MA, Ahmad B, Khan KM (2008) Bioleaching of Pb-Zn ore by moderate thermophilic chemolithotrophic bacteria. J Chem Soc Pak 30:61–68

    CAS  Google Scholar 

  13. Ilyas S, Bhatti HN, Bhatti IA, Sheikh MA, Ghauri MA (2010) Bioleaching of metal ions from low grade ore: process optimization by using orthogonal experimental array design. Afr J Biotechnol 19:2801–2810

    Google Scholar 

  14. Ilyas S, Chi R, Bhatti HN, Ghauri MA, Anwar MA (2010) Column bioleaching of metals from electronic scrap. Hydrometallurgy 101:135–140

    Article  CAS  Google Scholar 

  15. Johnson DB, Macvicar JHM, Rolfe S (1987) A new medium for the isolation and enumeration of Thiobacillus ferrooxidans and acidophilic heterotrophic bacteria. J Microbiol Meth 7:9–18

    Article  Google Scholar 

  16. Karamanev DG, Nikolov LN, Mamatarkova V (2002) Rapid simultaneous quantitative determination of ferric and ferrous ions in drainage waters and similar solutions. Miner Eng 15:341–346

    Article  CAS  Google Scholar 

  17. Silver S (1996) Bacterial resistance to toxic metal ions, a review. Gene 179:9–19

    Article  CAS  Google Scholar 

  18. Nies DH, Silver S (1995) Ion efflux systems involved in bacterial metal resistances. J Ind Microbiol 14:186–199

    Article  CAS  Google Scholar 

  19. Olafson RW, Mccubbin WD, Kay CM (1988) Primary and secondary structural analysis of a unique prokaryotic metallothionein from a Synechococcus sp. Cyanobacterium. Biochem J 251:691–699

    CAS  Google Scholar 

  20. Robinson NJ, Gupta A, Fordham SAP, Croy RRD, Whitton BA, Huckle JW (1990) Prokaryotic metallothionein gene characterization and expression: chromosome crawling by ligation-mediated PCR. Proc R Soc Lond 242:241–247

    Article  CAS  Google Scholar 

  21. Zhen S, Yan Z, Zhang Y, Wang J, Campbell M, Qin W (2009) Column bioleaching of a low grade nickel-bearing sulphide ore containing high magnesium as olivine, chlorite and antigorite. Hydrometallurgy 96:337–341

    Article  CAS  Google Scholar 

  22. Kelley BC, Touvinen OH (1988) Microbiological oxidation of minerals in mine tailings. In: Solomons W, Foerstner V (eds) Chemistry and biology of solid wastes. Springer, Berlin, pp 33–53

  23. Nemati M, Webb C (1997) A kinetic model for biological oxidation of ferrous iron by Thiobacillus ferrooxidans. Biotechnol Bioeng 53:478–486

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Changjiang scholars and innovation research team in universities (IRT0974), Higher Education Commission of Pakistan and National Institute for Biotechnology and Genetic Engineering (Industrial biotechnology division) of Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruan Chi.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ilyas, S., Chi, R., Bhatti, H.N. et al. Column bioleaching of low-grade mining ore containing high level of smithsonite, talc, sphaerocobaltite and azurite. Bioprocess Biosyst Eng 35, 433–440 (2012). https://doi.org/10.1007/s00449-011-0582-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-011-0582-3

Keywords

  • Column bioleaching
  • Low-grade sulfide ore
  • Consortium of moderate thermophiles