Skip to main content
Log in

High-level production of a single chain antibody against anthrax toxin in Escherichia coli by high cell density cultivation

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Previously, we isolated the M18 scFv, which is an affinity matured antibody against the anthrax toxin PA, and observed that its single chain antibody (scAb) form (M18 scAb) exhibited superior stability compared to the scFv. Here, we report high cell density cultivations for preparative scale production of M18 scAb in a 3.5 L fermenter. Briefly, a pH–stat feeding strategy was employed in fed-batch cultivation, and four different cell densities (OD600 of 40, 80, 120, and 150) were examined for the induction of scAb gene expression. Among the four cell densities investigated, lower cell densities (OD600 of 40) showed higher post-induction cell growth and production yields (665 mg/L of scAb). Even though lower solubility (51%) of scAb was achieved at lower cell density (OD600 of 40), monomeric scAb could be purified with high purity (>95%) using simple purification procedures. The purified scAb from high cell density cultures showed biological activity equivalent to that of scAb purified from shake flask cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Holliger P, Hudson PJ (2005) Engineered antibody fragments and the rise of single domains. Nat Biotechnol 23:1126–1136

    Article  CAS  Google Scholar 

  2. Hayhurst A, Happe S, Mabry R, Koch Z, Iverson BL, Georgiou G (2003) Isolation and expression of recombinant antibody fragments to the biological warfare pathogen Brucella melitensis. J Immunol Methods 276:185–196

    Article  CAS  Google Scholar 

  3. Maynard JA, Maassen CBM, Leppla SH, Brasky K, Patterson JL, Iverson BL, Georgiou G (2002) Protection against anthrax toxin by recombinant antibody fragments correlates with antigen affinity. Nat Biotechnol 20:597–601

    Article  CAS  Google Scholar 

  4. Byrne FR, Grant SD, Porter AJ, Harris WJ (1996) Cloning, expression and characterization of a single-chain antibody specific for the herbicide atrazine. Food Agric Immunol 8:19–29

    Article  CAS  Google Scholar 

  5. Hayhurst A (2000) Improved expression characteristics of single-chain Fv fragments when fused downstream of the Escherichia coli maltose-binding protein or upstream of a single immunoglobulin-constant domain. Protein Expr Purif 18:1–10

    Article  CAS  Google Scholar 

  6. Zhang Z, Song LP, Fang M, Wang F, He D, Zhao R, Liu J, Zhou ZY, Yin CC, Lin Q, Huang HL (2003) Production of soluble and functional engineered antibodies in Escherichia coli improved by FkpA. BioTechniques 35:1032–1041

    CAS  Google Scholar 

  7. Hayhurst A, Harris WJ (1999) Escherichia coli Skp chaperone coexpression improves solubility and phage display of single-chain antibody fragments. Protein Expr Purif 15:336–343

    Article  CAS  Google Scholar 

  8. Harvey BR, Georgiou G, Hayhurst A, Jeong KJ, Iverson BL, Rogers GK (2004) Anchored periplasmic expression, a versatile technology for the isolation of high-affinity antibodies from Escherichia coli-expressed libraries. Proc Natl Acad Sci USA 101:9193–9198

    Article  CAS  Google Scholar 

  9. Mabry R, Rani M, Geiger R, Hubbard GB, Carrion R Jr, Brasky K, Patterson JL, Georgiou G, Iverson BL (2005) Passive protection against anthrax by using a high-affinity antitoxin antibody fragment lacking an Fc region. Infect Immun 73:8362–8368

    Article  CAS  Google Scholar 

  10. Rivkin A (2009) Certolizumab pegol for the management of Crohn’s disease in adults. Clin Ther 31:1158–1176

    Article  CAS  Google Scholar 

  11. Lee SY (1996) High cell-density culture of Escherichia coli. Trends Biotechnol 14:98–105

    Article  CAS  Google Scholar 

  12. Shiloach J, Fass R (2005) Growing E. coli to high cell density—A historical perspective on method development. Biotechnol Adv 23:345–357

    Article  CAS  Google Scholar 

  13. Carter P, Kelley RF, Rodrigues ML, Snedecor B, Covarrubias M, Velligan MD, Wong WLT, Rowland AM, Kotts CE, Carver ME, Yang M, Bourell JH, Shepard HM, Henner D (1992) High level Escherichia coli expression and production of a bivalent humanized antibody fragment. Nat Biotechnol 10:163–167

    Article  CAS  Google Scholar 

  14. Pack P, Kujau M, Schroeckh V, Knupfer U, Wenderoth R, Riesenberg D, Pluckthun A (1993) Improved bivalent miniantibodies, with identical avidity as whole antibodies, produced by high cell density fermentation of Escherichia coli. Nat Biotechnol 11:1271–1277

    CAS  Google Scholar 

  15. Humphreys DP, Carrington B, Bowering LC, Ganesh R, Sehdev M, Smith BJ, King LM, Reeks DG, Lawson A, Popplewell AG (2002) A plasmid system for optimization of Fab’ production in Escherichia coli: importance of balance of heavy chain and light chain synthesis. Protein Expr Purif 26:309–320

    Article  CAS  Google Scholar 

  16. Simmons LC, Reilly D, Klimowski L, Raju TS, Meng G, Sims P, Hong K, Shields RL, Damico LA, Rancatore P, Yansura DG (2002) Expression of full-length immunoglobulins in Escherichia coli: rapid and efficient production of aglycosylated antibodies. J Immunol Methods 263:133–147

    Article  CAS  Google Scholar 

  17. Horn U, Strittmatter W, Krebber A, Knüpfer U, Kujau M, Wenderoth R, Müller K, Matzku S, Plückthun A, Riesenberg D (1996) High volumetric yields of functional dimeric miniantibodies in Escherichia coli, using an optimized expression vector and high-cell-density fermentation under non-limited growth conditions. Appl Microbiol Biotechnol 46:524–532

    Article  CAS  Google Scholar 

  18. Forsberg G, Forsgren M, Jaki M, Norin M, Sterky C, Enhorning A, Larsson K, Ericsson M, Bjork P (1997) Identification of framework residues in a secreted recombinant antibody fragment that control production level and localization in Escherichia coli. J Biol Chem 272:12430–12436

    Article  CAS  Google Scholar 

  19. Sletta H, Nedal A, Aune TEV, Hellebust H, Hakvag S, Aune R, Ellingsen TE, Valla S, Brautaset T (2004) Broad-host-range plasmid pJB658 can be used for industrial-level production of a secreted host-toxic single-chain antibody fragment in Escherichia coli. Appl Environ Microbiol 70:7033–7039

    Article  CAS  Google Scholar 

  20. Aldor IS, Krawitz DC, Forrest W, Chen C, Nishihara JC, Joly JC, Champion KM (2005) Proteomic profiling of recombinant Escherichia coli in high-cell-density fermentations for improved production of an antibody fragment biopharmaceutical. Appl Environ Microbiol 71:1717–1728

    Article  CAS  Google Scholar 

  21. Jeong KJ, Lee SY (1999) High-level production of human leptin by fed-batch cultivation of recombinant Escherichia coli and its purification. Appl Environ Microbiol 65:3027–3032

    CAS  Google Scholar 

  22. Corisdeo S, Wang B (2004) Functional expression and display of an antibody Fab fragment in Escherichia coli: study of vector designs and culture conditions. Protein Expr Purif 34:270–279

    Article  CAS  Google Scholar 

  23. Jeong KJ, Choi JH, Yoo WM, Keum KC, Yoo NC, Lee SY, Sung MH (2004) Constitutive production of human leptin by fed-batch culture of recombinant rpoS- Escherichia coli. Protein Expr Purif 36:150–156

    Article  CAS  Google Scholar 

  24. Durany O, de Mas C, Lopez-Sant J (2005) Fed-batch production of recombinant fuculose-1-phosphate aldolase in E. coli. Process Biochem 40:707–716

    Article  CAS  Google Scholar 

  25. Yim SC, Jeong KJ, Chang HN, Lee SY (2001) High-level secretory production of human granulocyte-colony stimulating factor by fed-batch culture of recombinant Escherichia coli. Bioprocess Biosyst Eng 24:249–254

    Article  CAS  Google Scholar 

  26. Rosendahl MS, Doherty DH, Smith DJ, Carlson SJ, Chlipala EA, Cox GN (2005) A long-acting, highly potent interferon alpha-2 conjugate created using site-specific PEGylation. Bioconjug Chem 16:200–207

    Article  CAS  Google Scholar 

  27. Kubetzko S, Sarkar CA, Pluckthun A (2005) Protein PEGylation decreases observed target association rates via a dual blocking mechanism. Mol Pharmacol 68:1439–1454

    Article  CAS  Google Scholar 

  28. Yang K, Basu A, Wang M, Chintala R, Hsieh M-C, Liu S, Hua J, Zhang Z, Zhou J, Li M, Phyu H, Petti G, Mendez M, Janjua H, Peng P, Longley C, Borowski V, Mehlig M, Filpula D (2003) Tailoring structure-function and pharmacokinetic properties of single-chain Fv proteins by site-specific PEGylation. Protein Eng 16:761–770

    Article  CAS  Google Scholar 

  29. Mabry R, Brasky K, Geiger R, Carrion R, Hubbard GB, Leppla S, Patterson JL, Georgiou G, Iverson BL (2006) Detection of anthrax toxin in the serum of animals infected with Bacillus anthracis by using engineered immunoassays. Clin Vaccine Immunol 13:671–677

    Article  CAS  Google Scholar 

  30. Griswold KE, Kawarasaki Y, Ghoneim N, Benkovic SJ, Iverson BL, Georgiou G (2005) Evolution of highly active enzymes by homology-independent recombination. Proc Natl Acad Sci USA 102:10082–10087

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. George Georgiou and Dr. Brent L. Iverson (University of Texas at Austin) for very helpful comments on research and manuscript preparation. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant No. 2010-0011216).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki Jun Jeong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, K.J., Rani, M. High-level production of a single chain antibody against anthrax toxin in Escherichia coli by high cell density cultivation. Bioprocess Biosyst Eng 34, 811–817 (2011). https://doi.org/10.1007/s00449-011-0531-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-011-0531-1

Keywords

Navigation