Skip to main content

Advertisement

Log in

Immobilization and characterization of benzoylformate decarboxylase from Pseudomonas putida on spherical silica carrier

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

If an adequate biocatalyst is identified for a specific reaction, immobilization is one possibility to further improve its properties. The immobilization allows easy recycling, improves the enzyme performance, and it often enhances the stability of the enzyme. In this work, the immobilization of the benzoylformate decarboxylase (BFD) variant, BFD A460I-F464I, from Pseudomonas putida was accomplished on spherical silica. Silicagel is characterized by its high mechanical stability, which allows its application in different reactor types without restrictions. The covalently bound enzyme was characterized in terms of its activity, stability, and kinetics for the formation of chiral 2-hydroxypropiophenone (2-HPP) from benzaldehyde and acetaldehyde. Moreover, temperature as well as pressure dependency of immobilized BFD A460I-F464I activity and enantioselectivity were analyzed. The used wide-pore silicagel shows a good accessibility of the immobilized enzyme. The activity of the immobilized BFD A460I-F464I variant was determined to be 70% related to the activity of the free enzyme. Thereby, the enantioselectivity of the enzyme was not influenced by the immobilization. In addition, a pressure-induced change in stereoselectivity was found both for the free and for the immobilized enzyme. With increasing pressure, the enantiomeric excess (ee) of (R)-2-HPP can be increased from 44% (0.1 MPa) to 76% (200 MPa) for the free enzyme and from 43% (0.1 MPa) to 66% (200 MPa) for the immobilized enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cao L (2005) Carrier-bound immobilized enzymes. Wiley-VCH, Weinheim

    Book  Google Scholar 

  2. Lee Ch, Lin TS, Mou CY (2009) Mesoporous materials for encapsulating enzymes. Nano Today 4:165–197

    Article  CAS  Google Scholar 

  3. White CA, Kennedy JF (1980) Popular matrices for enzyme and other immobilizations. Enzyme Microb Technol 2:82–90

    Article  CAS  Google Scholar 

  4. Gemeiner P (1992) Materials for enzyme engineering. In: Gemeiner P (ed) Enzyme engineering. Ellis Horwood, New York, pp 13–119

    Google Scholar 

  5. Hilterhaus L, Minow B, Müller J, Berheide M, Quitmann H, Katzer M, Thum O, Antranikian G, Zeng AP, Liese A (2008) Practical application of different enzymes immobilized on sepabeads. Bioprocess Biosyst Eng 31:163–271

    Article  CAS  Google Scholar 

  6. Rosenfeld H, Aniulyte J, Helmholz H, Liesiene J, Thiesen P, Niemeyer B, Prange A (2005) Comparison of modified supports on the base of glycoprotein interaction studies and of adsorption investigations. J Chromatogr A 1092:76–88

    Article  CAS  Google Scholar 

  7. Kümel G, Daus H, Mauch H (1979) Improved method for the cyanogen bromide activation of agarose beads. J Chromatogr 172:221–226

    Article  Google Scholar 

  8. Sundberg L, Porath J (1974) Preparation of adsorbents for biospecific affinity chromatography: I. Attachment of group-containing ligands to insoluble polymers by means of bifunctional oxiranes. J Chromatogr 90:87–98

    Article  CAS  Google Scholar 

  9. Nilsson K, Mosbach K (1981) Immobilization of enzymes and affinity ligands to various hydroxyl group carrying supports using highly reactive sulfonyl chlorides. Biochem Biophys Res Commun 102:449–457

    Article  CAS  Google Scholar 

  10. Nilsson K, Mosbach K (1987) Tresyl chloride-activated supports for enzyme immobilization. Methods Enzymol 135:65–78

    Article  CAS  Google Scholar 

  11. Nilsson K, Mosbach K (1984) Immobilization of ligands with organic sulfonyl chlorides. Methods Enzymol 104:56–69

    Article  CAS  Google Scholar 

  12. Bethel GS, Ayers JS, Hancock WS, Hearn MTW (1979) A novel method of activation of cross-linked agaroses with 1,1′-carbonyl diimidazole which gives a matrix for affinity chromatography devoid of additional charged groups. J Biol Chem 254:2572–2574

    Google Scholar 

  13. Cuatrecasas P, Parikh I (1972) Adsorbents for affinity chromatography. Use of N-hydroxysuccinimide esters of agarose. Biochemistry 11:2291–2299

    Article  CAS  Google Scholar 

  14. Wilcocks R, Ward O, Collins S, Dewdney N, Hong Y, Prosen E (1992) Acyloin formation by benzoylformate decarboxylase from Pseudomonas putida. Appl Environ Microbiol 58:1699–1704

    CAS  Google Scholar 

  15. Wilcocks R, Ward O (1992) Factors affecting 2-hydroxypropiophenone formation by benzoylformate decarboxylase from Pseudomonas putida. Biotechnol Bioeng 39:1058–1063

    Article  CAS  Google Scholar 

  16. Iding H, Dunnwald T, Greiner L, Liese A, Muller M, Siegert P, Grotzinger J, Demir AS, Pohl M (2000) Benzoylformate decarboxylase from Pseudomonas putida as stable catalyst for the synthesis of chiral 2-hydroxy ketones. Chem Eur J 6:1483–1495

    Article  CAS  Google Scholar 

  17. Dunnwald T, Demir AS, Siegert P, Pohl M, Muller M (2000) Enantioselective synthesis of (S)-2-hydroxypropanone derivatives by benzoylformate decarboxylase catalyzed C–C bond formation. Eur J Org Chem 11:2161–2170

    Article  Google Scholar 

  18. Gala D, DiBenedetto DJ, Clark JE, Murphy BL, Schumacher DP, Steinman M (1996) Preparations of antifungal Sch 42427/SM 9164: preparative chromatographic resolution, and total asymmetric synthesis via enzymatic preparation of chiral alphahydroxy arylketones. Tetrahedron Lett 37:611–614

    Article  CAS  Google Scholar 

  19. Fang QK, Han ZX, Grover P, Kessler D, Senanayake CH, Wald SA (2000) Rapid access to enantiopure bupropion and its major metabolite by stereospecific nucleophilic substitution on an alpha-ketotriflate. Tetrahedron Asymmetr 11:3659–3663

    Article  CAS  Google Scholar 

  20. Berheide M, Peper S, Kara S, Long WS, Schenkel S, Pohl M, Niemeyer B, Liese A (2010) Influence of the hydrostatic pressure and pH on the asymmetric 2-hydroxyketone formation catalyzed by Pseudomonas putida benzoylformate decarboxylase and variants thereof. Biotechnol Bioeng 106:18–26

    CAS  Google Scholar 

  21. Siegert P, McLeish MJ, Baumann M, Iding H, Kneen MM, Kenyon GL, Pohl M (2005) Exchanging the substrat specificities of pyruvate decarboxylase from Zymomonas mobilis and benzoylformate decarboxylase from Pseudomonas putida. Protein Eng Des Sel 18:345–357

    Article  CAS  Google Scholar 

  22. Bradford MM (1976) Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  23. Helmholz H, Cartellieri S, He LZ, Thiesen PH, Niemeyer B (2003) J Chromatogr A 1006:127–135

    Article  CAS  Google Scholar 

  24. Hagen J (1992) Reaktionskinetik und Reaktordesign. In: Hopp V (ed) Chemische Reaktionstechnik: eine Einführung mit Übungen. VCH, Weinheim, pp 85–92

    Google Scholar 

  25. Balny C, Masson P (1993) Effects of high pressure on proteins. Food Reviews International 9:611–628

    Article  CAS  Google Scholar 

  26. Balny C (1998) High pressure enzyme kinetics. In: Ludwig H (ed) Advances in high pressure bioscience and biotechnology. Springer, Heidelberg

    Google Scholar 

  27. Knorr D, Heinz V, Buckow R (2006) High pressure application of food biopolymers. Biochim Biophys Acta 1764:619–631

    CAS  Google Scholar 

  28. Meersman F, Dobson CM, Heremans K (2006) Protein unfolding, amyloid fibril formation and configurational energy landscapes under high pressure conditions. Chem Soc Rev 38:908–917

    Article  Google Scholar 

  29. Northrop DB (2002) Effects of high pressure on enzyme activity. Biochim Biophys Acta 1595:71–79

    Article  CAS  Google Scholar 

  30. Jansen J, Niemeyer B (2005) Automated high pressure plant for continuous flow through a fixed bed—investigation of hydrodynamic behaviour. J Supercrit Fluids 33:283–291

    Article  CAS  Google Scholar 

  31. Gocke D, Walter L, Gauchenova E, Kolter G, Knoll M, Berthold CL, Schneider G, Pleiss J, Müller M, Pohl M (2008) Rational protein design of ThDP-dependent enzymes-engineering stereoselectivity. ChembioChem 9:406–412

    Article  CAS  Google Scholar 

  32. Knoll M, Müller M, Pleiss J, Pohl M (2006) Factors mediating activity selectivity, and substrate specificity for the thiamin diphosphatedependent enzymes benzaldehyde lyase and benzoylformate decarboxylase. Chembiochem 7:1928–1934

    Article  CAS  Google Scholar 

  33. Polovnikova ES, McLeish MJ, Sergienko EA, Burgner JT, Anderson NL, Bera AK, Jordan F, Kenyon GL, Hasson MS (2003) Structural and kinetic analysis of catalysis by a thiamin diphosphate-dependent enzyme, benzoylformate decarboxylase. Biochemistry 42:1820–1830

    Article  CAS  Google Scholar 

  34. Berheide M (2010) Untersuchungen zur Enantioselektivität Thiamindiphosphat abhängiger Enzyme: Reaktionstechnische Optimierung der C–C Bindungsbildung. Disseration URN: urn:nbn:de:gbv:830-tubdok-9606. http://doku.b.tu-harburg.de/volltexte/2010/960/

Download references

Acknowledgments

We thank the Deutsch Forschungsgemeinschaft DFG for the financial support of the project. Prof. Dr. Martina Pohl (Institute of Molecular Enzyme Technology, Heinrich-Heine University of Düsseldorf, Research Center Jülich) is gratefully acknowledged for kindly providing the variant BFD A460I-F464I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie Peper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peper, S., Kara, S., Long, W.S. et al. Immobilization and characterization of benzoylformate decarboxylase from Pseudomonas putida on spherical silica carrier. Bioprocess Biosyst Eng 34, 671–680 (2011). https://doi.org/10.1007/s00449-011-0516-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-011-0516-0

Keywords

Navigation