Skip to main content
Log in

Repeated fed-batch lactic acid production in a packed bed-stirred fermentor system using a pH feedback feeding method

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Lactic acid production by repeated fed-batch fermentation using free and immobilized cells of Lactobacillus lactis-11 in a packed bed-stirred fermentor (PBSF) system filled with different support materials including ceramic beads, macro-activated carbon cylinders and glass fiber balls was investigated. The results showed that the optimal support materials were the ceramic beads with diameters of 1–2 mm. Compared with the free cell fermentation system, lactic acid production and volumetric productivity in the PBSF system increased by 16.6 and 12.5%, respectively. Though the concentration of free cells decreased sharply, lactic acid production remained stable in five consecutive fed-batch runs using the PBSF system. pH gradients, immobilized cell concentration and mass diffusion in the packed bed were all affected by the recirculation rate of the culture broth. Maximum lactic acid production, productivity and yield occurred at a recirculation rate of 50 mL min−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Newman KD, McBurney MW (2004) Poly (d,l lactic-co-glycolic acid) microspheres as biodegradable microcarriers for pluripotent stem cells. Biomaterials 25:5763–5771

    Article  CAS  Google Scholar 

  2. Senthuran A, Senthuran V, Mattiasson B, Kaul R (1997) Lactic acid fermentation in a recycle batch reactor using immobilized Lactobacillus casei. Biotechnol Bioeng 55:841–853

    Article  CAS  Google Scholar 

  3. Elezi O, Kourkoutas Y, Koutinas AA, Kanellaki M, Bezirtzoglou E, Barnett YA, Nigam P (2003) Food additive lactic acid production by immobilized cells of Lactobacillus brevis on delignified cellulosic material. J Agric Food Chem 51:5285–5289

    Article  CAS  Google Scholar 

  4. Lee KW, Baick SC, Chung WH, Kim HW (2003) Structural observation of microencapsulated Lactobacillus acidophilus by optical and scanning electron microscopy. Food Sci Biotechnol 12:13–17

    Google Scholar 

  5. Park JK, Chang HN (2000) Microencapsulation of microbial cells. Biotechnol Adv 18:303–319

    Article  CAS  Google Scholar 

  6. Pramod T, Lingappa K (2008) Immobilization of Aspergillus niger in polyurethane foam for citric acid production from carob pod extract. Am J Food Technol 3:252–256

    Article  CAS  Google Scholar 

  7. Andrews GF, Fonta JP (1989) A fluidized-bed continuous bioreactor for lactic acid production. Appl Biochem Biotech 20:375–390

    Article  Google Scholar 

  8. Goncalves LMD, Barreto MTO, Xavier A, Carrondo MJT, Klein J (1992) Inert supports for lactic acid fermentation—a technological assessment. Appl Microbiol Biotechnol 38:305–311

    Article  CAS  Google Scholar 

  9. Guoqiang D, Kaul R, Mattiasson B (1992) Immobilization of Lactobacillus casei cells to ceramic material pretreated with polyethylenimine. Appl Microbiol Biotechnol 37:305–310

    Article  Google Scholar 

  10. Krischke W, Schröder M, Trösch W (1991) Continuous production of l-lactic acid from whey permeate by immobilized Lactobacillus casei subsp. casei. Appl Microbiol Biotechnol 34:573–578

    Article  CAS  Google Scholar 

  11. Silva EM, Yang ST (1995) Kinetics and stability of a fibrous-bed bioreactor for continuous production of lactic acid from unsupplemented acid whey. J Biotechnol 41:59–70

    Article  CAS  Google Scholar 

  12. Demirci A, Pometto AL, Johnson KE (1993) Lactic acid production in a mixed-culture biofilm reactor. Appl Environ Microbiol 59:203–207

    CAS  Google Scholar 

  13. Demirci A, Pometto AL (1995) Repeated-batch fermentation in biofilm reactors with plastic-composite supports for lactic acid production. Appl Microbiol Biotechnol 43:585–589

    Article  CAS  Google Scholar 

  14. Tango M, Ghaly A (2002) A continuous lactic acid production system using an immobilized packed bed of Lactobacillus helveticus. Appl Microbiol Biotechnol 58:712–720

    Article  CAS  Google Scholar 

  15. Boyaval P, Goulet J (1988) Optimal conditions for production of lactic acid from cheese whey permeate by Ca-alginate-entrapped Lactobacillus helveticus. Enzyme Microb Technol 10:725–728

    Article  CAS  Google Scholar 

  16. Yang ST, Zhu H, Li Y, Hong G (1994) Continuous propionate production from whey permeate using a novel fibrous bed bioreactor. Biotechnol Bioeng 43:1124–1130

    Article  CAS  Google Scholar 

  17. Zhu Y, Wu Z, Yang ST (2002) Butyric acid production from acid hydrolysate of corn fibre by Clostridium tyrobutyricum in a fibrous-bed bioreactor. Process Biochem 38:657–666

    Article  CAS  Google Scholar 

  18. Huang YL, Wu Z, Zhang L, Ming Cheung C, Yang ST (2002) Production of carboxylic acids from hydrolyzed corn meal by immobilized cell fermentation in a fibrous-bed bioreactor. Bioresour Technol 82:51–59

    Article  CAS  Google Scholar 

  19. Suwannakham S, Yang ST (2005) Enhanced propionic acid fermentation by Propionibacterium acidipropionici mutant obtained by adaptation in a fibrous-bed bioreactor. Biotechnol Bioeng 91:325–337

    Article  CAS  Google Scholar 

  20. Sirisansaneeyakul S, Luangipat T, Vanichsriratana W, Srinophakun T, Chen HHH, Chisti Y (2007) Optimization of lactic acid production by immobilized Lactococcus lactis IO-1. J Indian Microbiol Biotechnol 34:381–391

    Article  CAS  Google Scholar 

  21. De Man JC, Rogosa M, Sharpe ME (1960) A medium for the cultivation of lactobacilli. J Appl Microbiol 23:130–135

    Article  Google Scholar 

  22. Lv WH, Cong W, Cai ZL (2004) Improvement of nisin production in pH feed-back controlled, fed-batch culture by Lactococcus lactis subsp. lactis. Biotechnol Lett 26:1713–1716

    Article  Google Scholar 

  23. Bai DM, Jia MZ, Zhao XM, Ban R, Shen F, Li XG, Xu SM (2003) l(+)-Lactic acid production by pellet-form Rhizopus oryzae R1021 in a stirred tank fermentor. Chem Eng Sci 58:785–791

    Article  CAS  Google Scholar 

  24. Yabannavar VM, Wang DIC (1991) Extractive fermentation for lactic acid production. Biotechnol Bioeng 37:1095–1100

    Article  CAS  Google Scholar 

  25. Xuemei L, Jianping L, Mo’e L, Peilin C (1999) l-Lactic acid production using immobilized Rhizopus oryzae in a three-phase fluidized-bed with simultaneous product separation by electrodialysis. Bioprocess Biosyst Eng 20:231–237

    CAS  Google Scholar 

  26. Chen C, Ju LK (2002) Coupled lactic acid fermentation and adsorption. Appl Microbiol Biotechnol 59:170–174

    Article  CAS  Google Scholar 

  27. Bai DM, Yan ZH, Wei Q, Zhao XM, Li XG, Xu SM (2004) Ammonium lactate production by Lactobacillus lactis BME5-18M in pH-controlled fed-batch fermentations. Biochem Eng J 19:47–51

    Article  CAS  Google Scholar 

  28. Mozes N, Marchal F, Hermesse MP, Van Haecht JL, Reuliaux L, Leonard AJ, Rouxhet PG (1987) Immobilization of microorganisms by adhesion: interplay of electrostatic and nonelectrostatic interactions. Biotechnol Bioeng 30:439–450

    Article  CAS  Google Scholar 

  29. Yang ST, Huang Y, Hong G (1995) A novel recycle batch immobilized cell bioreactor for propionate production from whey lactose. Biotechnol Bioeng 45:379–386

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National High-Tech Research and Development Program (863 Program, PR China, 2007AA10Z360).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Cong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Cong, W. & Shi, S.Y. Repeated fed-batch lactic acid production in a packed bed-stirred fermentor system using a pH feedback feeding method. Bioprocess Biosyst Eng 34, 67–73 (2011). https://doi.org/10.1007/s00449-010-0447-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-010-0447-1

Keywords

Navigation