Skip to main content
Log in

Highly selective resonance scattering detection of trace thrombin using aptamer-modified AuRe nanoprobe

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The gold-rhenium (AuRe) composite nanoparticle was prepared by NaBH4 reduction procedure, and was modified by the aptamer to obtain an AuRe nanoprobe (AuRessDNA) for thrombin. In pH 7.0 Tris–HCl buffer solution and in the presence of salt, the nanoprobe specifically combined with thrombin to form AuRe-aptamer-thrombin cluster that resulted in the resonance scattering intensity (I 560 nm) increasing at 560 nm. The increased intensity ΔI 560 nm was linear to the thrombin concentration in the range of 0.115–6.93 nmol/L, with a regression equation of ΔI 560 nm = 53.0 C + 2.5, a correlation coefficient of 0.9989, and a detection limit of 13 pmol/L. This method was applied to detect thrombin in human plasma samples, with satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brummel ZK, Undas A, Orfeo T, Gissel M, Butenas S, Zmudka K, Mann KG (2008) Thrombin generation in acute coronary syndrome and stable coronary artery disease: dependence on plasma factor composition. J Thromb Haemost 6:104–110

    Article  Google Scholar 

  2. Peters M, Plaat BE, Cate HT, Wolters HJ, Weening RS, Brandjes DP (1994) Enhanced thrombin generation in children with sickle cell disease. Thromb Haemost 71(2):169–172

    CAS  Google Scholar 

  3. Meddahi S, Bara L, Fessi H, Samama MM (2004) Standard measurement of clot-bound thrombin by using a chromogenic substrate for thrombin. Thromb Res 114(1):51–56

    CAS  Google Scholar 

  4. Aurell L, Friberger P, Karlsson G, Claeson G (1977) A new sensitive and highly specific chromogenic peptide substrate for factor Xa. Thromb Res 11:595–609

    Article  CAS  Google Scholar 

  5. Bock LC, Griffin LC, Latham JA, Vermaas ER, Toole JJ (1992) Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355(6360):564–566

    Article  CAS  Google Scholar 

  6. Wang XY, Dong P, Yun W, Xu Y, He PG, Fang YZ (2009) A solid-state electrochemiluminescence biosensing switch for detection of thrombin based on ferrocene-labeled molecular beacon aptamer. Biosens Bioelectron 24(11):3288–3292

    Article  CAS  Google Scholar 

  7. Hansen JA, Wang J, Kawde AN, Xiang Y, Gothelf KV, Collins G (2006) Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. J Am Chem Soc 128:2228–2229

    Article  CAS  Google Scholar 

  8. Degefa TH, Hwang S, Kwon D, Park JH, Kwak J (2009) Aptamer-based electrochemical detection of protein using enzymatic silver deposition. Electrochim Acta 54(27):6788–6791

    Article  CAS  Google Scholar 

  9. Ikebukuro K, Kiyohara C, Sode K (2005) Novel electrochemical sensor system for protein using the aptamers in sandwich manner. Biosens Bioelectron 20(10):2168–2172

    Article  CAS  Google Scholar 

  10. Suprun E, Shumyantseva V, Bulko T, Rachmetova S, Rad’ko S, Bodoev N, Archakov A (2008) Au-nanoparticles as an electrochemical sensing platform for aptamer—thrombin interaction. Biosens Bioelectron 24(4):825–830

    Article  CAS  Google Scholar 

  11. Zhang XR, Qi BP, Li Y, Zhang SS (2009) Amplified electrochemical aptasensor for thrombin based on bio-barcode method. Biosens Bioelectron 25(1):259–262

    Article  CAS  Google Scholar 

  12. Wei H, Li BL, Li J, Wang EK, Dong SJ (2007) Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. Chem Commun, pp 3735–3737

  13. Li T, Wang EK, Dong SJ (2008) G-quadruplex-based DNAzyme for facile colorimetric detection of thrombin. Chem Commun, pp 3654–3656

  14. Pavlov V, Xiao Y, Shlyahovsky B, Willner I (2004) Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin. J Am Chem Soc 126(38):11768–11769

    Article  CAS  Google Scholar 

  15. Wang XY, Zhou JM, Yun W, Xiao SS, Chang Z, He PG, Fang YZ (2007) Detection of thrombin using electrogenerated chemiluminescence based on Ru(bpy) 2+3 -doped silica nanoparticle aptasensor via target protein-induced strand displacement. Anal Chim Acta 598(2):242–248

    Article  CAS  Google Scholar 

  16. Gill R, Polsky R, Willner I (2006) Pt nanoparticles functionalized with nucleic acid act as catalytic labels for the chemiluminescent detection of DNA and proteins. Small 2(8–9):1037–1041

    Article  CAS  Google Scholar 

  17. Li T, Wang EK, Dong SJ (2008) Chemiluminescence thrombin aptasensor using high-activity DNAzyme as catalytic label. Chem Commun, pp 5520–5522

  18. Wang WJ, Chen CL, Qian MX, Zhao XS (2008) Aptamer biosensor for protein detection using gold nanoparticles. Anal Biochem 373(2):213–219

    Article  CAS  Google Scholar 

  19. Wang YL, Wei H, Li BL, Ren W, Guo SJ, Dong SJ, Wang EK (2007) SERS opens a new way in aptasensor for protein recognition with high sensitivity and selectivity. Chem Commun, pp 5220–5222

  20. Bizzarri AR, Cannistraro S (2009) Surface-enhanced Raman spectroscopy combined with atomic force microscopy for ultrasensitive detection of thrombin. Anal Biochem 393(2):149–154

    Article  CAS  Google Scholar 

  21. Liu SP, Luo HQ, Li NB, Liu ZF, Zheng WX (2001) Resonance rayleigh scattering study of the interactionof heparin with some basic diphenyl naphthylmethane dyes. Anal Chem 73:3907–3914

    Article  CAS  Google Scholar 

  22. Luo HQ, Li NB, Liu SP (2006) Resonance rayleigh scattering study of interaction of hyaluronic acid with ethyl violet dye and its analytical application. Biosens Bioelectron 21:1186–1194

    Article  CAS  Google Scholar 

  23. Liu ZD, Li J, Ling YF, Huang CZ (2009) A localized surface plasmon resonance light-scattering assay of mercury (II) on the basis of Hg2+-DNA complex induced aggregation of gold nanoparticles. Environ Sci Technol 43:5022–5027

    Article  CAS  Google Scholar 

  24. Liang AH, Zhang NN, Jiang ZL, Wang SM (2008) A sensitive resonance scattering spectral assay for the determination of trace H2O2 based on the HRP catalytic reaction and nanogold aggregation. J Fluoresc 18:1035–1041

    Article  CAS  Google Scholar 

  25. Jiang ZL, Zou MJ, Liang AH (2008) An immunonanogold resonance scattering spectral probe for rapid assay of human chorionic gonadotrophin. Clin Chim Acta 387:24–30

    Article  CAS  Google Scholar 

  26. Liu KG, Yuan R, Chai YQ, Tang DP, An HZ (2010) [AuCl4]- and Fe3+/[Fe(CN)6]3- ions-derivated immunosensing interface for electrochemical immunoassay of carcinoembryonic antigen in human serum. Bioprocess Biosyst Eng 33:179–185

    Article  CAS  Google Scholar 

  27. Jiang ZL, Liao XJ, Deng AP, Liang AH, Li JS, Pan HC, Li JF, Wang SM, Huang YJ (2008) Catalytic effect of nanogold on Cu(II)-N2H4 reaction and its application to resonance scattering immunoassay. Anal Chem 80:8681–8687

    Article  CAS  Google Scholar 

  28. Wei XL, Zou MJ, Jiang ZL, Liu QY, Wen GQ (2008) A highly sensitive resonance scattering assay for immunoglubin M using Ag(I)-hydroquinone-immunonanogold catalytic reaction. Plasmonics 3:73–78

    Article  CAS  Google Scholar 

  29. Jiang ZL, Fan YY, Chen ML, Liang AH, Liao XJ, Wen GQ, Shen XC, He XC, Pan HC, Jiang HS (2009) Resonance scattering spectral detection of trace Hg2+ using aptamer-modified nanogold as probe and nanocatalyst. Anal Chem 81:5439–5445

    Article  CAS  Google Scholar 

  30. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382(6592):607–609

    Article  CAS  Google Scholar 

  31. Tasset DM, Kublik MF, Steiner W (1997) Oligonucleotide inhibitor of human thrombin that bind distinct epitopes. J Mol Biol 272(5):688–698

    Article  CAS  Google Scholar 

  32. Spiridonova VA, Rog EV, Dugina TN, Strukova SM, Kopylov AM (2003) Aptamer DNA-a new type of thrombin inhibitor. Bioorg Khim 29(5):495–498

    CAS  Google Scholar 

  33. Jennifer AK, Juli F, Todd OY (1996) Reconciliation of the X-ray and NMR structures of the thrombin-binding aptamer d (GGTTGGTGTGGTTGG). J Mol Biol 256(3):417–422

    Article  Google Scholar 

  34. Baldrich E, Restrepo A, O'Sullivan CK (2004) Aptasensor development: elucidation of critical parameters for optimal aptamer performance. Anal Chem 76:7053–7063

    Article  CAS  Google Scholar 

  35. Nagatoishi S, Tanaka Y, Tsumoto K (2007) Circular dichroism spectra demonstrate formation of the thrombin-binding DNA aptamer G-quadruplex under stabilizing-cation-deficient conditions. Biochem Biophys Res Commun 352(3):812–817

    Article  CAS  Google Scholar 

  36. Tu YH, Cheng GF, Lin L, Zheng J, Wu ZR, He PG, Fang YZ (2006) Detection of thrombin with a novel nanobiosensor based on aptamer fluorescence. Chem J Chin Univ 27(12):2266–2270

    CAS  Google Scholar 

  37. Yang H, Ji J, Liu Y, Kong J, Liu B (2009) An aptamer-based biosensor for sensitive thrombin detection. Electrochem Commun 11(1):38–40

    Article  CAS  Google Scholar 

  38. Song MY, Zhang YX, Li T, Wang ZX, Yin JF, Wang HL (2009) Highly sensitive detection of human thrombin in serum by affinity capillary electrophoresis/laser-induced fluorescence polarization using aptamers as probes. J Chromatogr A 1216(5):873–878

    Article  CAS  Google Scholar 

  39. Zheng J, Feng WJ, Lin L, Zhang F, Cheng GF, He PG, Fang YZ (2007) A new amplification strategy for ultrasensitive electrochemical aptasensor with network-like thiocyanuric acid/gold nanoparticles. Biosens Bioelectron 23(3):341–347

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 20667001, 20865002, 20965002), Natural Science Foundation of Guangxi (No.0991021Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiliang Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, A., Li, J., Jiang, C. et al. Highly selective resonance scattering detection of trace thrombin using aptamer-modified AuRe nanoprobe. Bioprocess Biosyst Eng 33, 1087–1094 (2010). https://doi.org/10.1007/s00449-010-0434-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-010-0434-6

Keywords

Navigation