Skip to main content
Log in

Monitoring fermentation parameters during phytase production in column-type bioreactor using a new data acquisition system

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Fermentation parameters for phytase production in column-type bioreactor were monitored using a new data acquisition system. There are a number of studies reporting phytase production in flasks, but a lack of data about microorganism respiration behaviour during phytase production using column bioreactor. The objectives of this work were the monitoration of fermentation parameters during phytase production and its relation with fungal growth and forced air. Phytase production by A. niger FS3 increased with forced air. The O2 consumption and CO2 production during solid-state fermentation were monitored by sensors (in the bottom and top of the columns) linked to controllers, recorded by acquisition software and processed by Fersol2® software tool. Phytase synthesis was associated with fungal growth. Therefore, phytase could be used to estimate FS3 biomass formed in citric pulp degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Singhania RR, Soccol CR, Pandey A (2008) Recent advances in solid-state fermentation. Biochem Eng J 44(1):13–18

    Google Scholar 

  2. Sturm W, Soccol CR, Dergint DE, Rodriguez-Leon JA, Magalhaes DCNV, Pandey A (2007) Informatics in solid-state fermentation (Chapter 08). In: Pandey A, Soccol CR, Larroche C (eds) Current developments in solid-state fermentation. Springer Science Business Media, LLC, New York, pp 169–180

    Google Scholar 

  3. Mitchell DA, Krieger N, Stuart DM, Pandey A (2000) New developments in solid state fermentation: II. Rational approaches to the design, operation and scale-up of bioreactors. Process Biochem 35(10):1211–1225

    Article  CAS  Google Scholar 

  4. Pandey A, Soccol CR, Mitchell D (2000) New developments in solid state fermentation: I bioprocesses and products. Process Biochem 35:1153–1169

    Article  CAS  Google Scholar 

  5. Pandey A, Soccol CR, Rodríguez-león JA, Nigam P (2001) Solid state fermentation in biotechnology: fundamentals and applications. Asiatech Publishers Inc, New Delhi

    Google Scholar 

  6. Pandey A, Szakacs G, Soccol CR, Rodriguez-Leon JA, Soccol VT (2001) Production, purification and properties of microbial phytases. Bioresour Technol 77:203–214

    Article  CAS  Google Scholar 

  7. Okasaki N, Sugama S, Tanaka T (1980) Mathematical model of surface culture of koji mold. J Ferment Technol 58:471–476

    Google Scholar 

  8. Desgranges C, Vergoignan C, Georges M, Durand A (1991) Biomass estimation in solid state fermentation. Appl Microbiol Biotechnol 35:200–205

    CAS  Google Scholar 

  9. Carvalho JC, Pandey A, Oishi BO, Brand D, Rodriguez-León JA, Soccol CR (2006) Relation between growth, respirometric analysis and biopigments production from Monascus by solid-state fermentation. Biochem Eng J 29:262–269

    Google Scholar 

  10. Bellon-Maurel V, Orliac O, Christen P (2003) Sensors and measurements in solid state fermentation: a review. Process Biochem 38:881–896

    Article  CAS  Google Scholar 

  11. Spier MR, Greiner UK, Greiner R, Rodriguez-León JA, Carvalho JC, Woiciechowski AL, Soccol CR (2007) Relation between respirometric data and amylolytic enzyme production by SSF in column-type bioreactor. Int J Chem React Eng 5:A67

    Google Scholar 

  12. Nishio N, Tai T, Nagai S (1979) Hydrolase production by Aspergillus niger in solid state cultivation. Eur J Appl Microbiol Biotechnol 8:263–270

    Article  CAS  Google Scholar 

  13. Carrizalez V, Rodríguez H, Sardiña I (1981) Determination of the specific growth rate of molds on semi-solid cultures. Biotechnol Bioeng 23:321–333

    Article  CAS  Google Scholar 

  14. Doelle HW, Mitchell DA, Rolz CE (1992) Solid substrate cultivation. Elsevier Applied Science, London

    Google Scholar 

  15. Rodríguez-León JA, Sastre L, Echevarria J, Delgado G, Bechstedt W (1988) A mathematical approach for the estimation of biomass production rate in solid-state fermentation. Acta Biotechnol 8:307–310

    Article  Google Scholar 

  16. Viccini G, Mitchell DA, Boit SD, Gern JC, Rosa AS, Costa RM, Dalsenter FDH, Meien OF, Krieger N (2001) Analysis of growth kinetic profiles in solid-state fermentation. Food Technol Biotechnol 39:123

    Google Scholar 

  17. Hamidi-Esfahani Z, Hejazi P, Shojaosadati SA, Hoogschagen M, Vasheghani-Farahani E, Rinzema A (2007) A two-phase kinetic model for fungal growth in solid-state cultivation. Biochem Eng J 36:100–107

    Article  CAS  Google Scholar 

  18. Spier MR, Greiner R, Rodríguez-León JA, Woiciechowski AL, Pandey A, Soccol VT, Soccol CR (2008) Phytase production using citrus pulp and other residues of the agro-industry in SSF by fungal isolates. Food Technol Biotechnol 46:178–182

    CAS  Google Scholar 

  19. Raeder U, Broda P (1985) Rapid preparation of DNA from filamentous fungi. Lett Appl Microbiol 1:17–20

    Google Scholar 

  20. Glienke-Blanco C, Aguilar-Vildoso CI, Vieira MLC, Barroso PAV, Azevedo JL (2002) Genetic variability in the endophytic fungus Guignardia citricarpa isolated from citrus plants. Genet Mol Biol 25:251–255

    Article  CAS  Google Scholar 

  21. Heinonen JK, Lahti RJ (1981) A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Anal Biochem 113:313–317

    Article  CAS  Google Scholar 

  22. Sturm W (2004) Industrial sensors: theorical concepts and pratical applications (in Portuguese). Papel Virtual Ed, Rio de Janeiro, 131 p

  23. Seitz LM, Sauer DB, Burroughs R, Mohr HE, Hubbard JD (1979) Ergosterol as a measure of fungal growth. Phytopathology 69:1202–1203

    Article  CAS  Google Scholar 

  24. Prado FC, Vandenberghe LPS, Soccol CR (2005) Relation between citrus acid production by solid state fermentation from cassava bagasse and respiration of Aspergillus niger LPB 21 in semi-pilot scale. Braz Arch Biol Technol 48:29–36

    Google Scholar 

  25. Sakurai Y, Lee TH, Shiota H (1977) On the convenient method for glucosamine estimation in Koji. Agric Biol Chem 41(4):619–624

    CAS  Google Scholar 

  26. Blix G (1948) The determination of hexosamines according to Elson and Morgan. Acta Chem Scand 2:467–473

    Article  CAS  Google Scholar 

  27. Oostra J, Comte EP, van den Heuvel JC, Tramper J, Rinzema A (2001) Oxygen diffusion limitation in solid-state fermentation. Biotechnol Bioeng 74:13–24

    Article  Google Scholar 

  28. Raghavarao KSMS, Ranganathan TV, Karanth NG (2003) Some engineering aspects of solid-state fermentation. Biochem Eng J 13:127–135

    Article  CAS  Google Scholar 

  29. Krishna C, Nokes SE (2001) Influence of inoculum size on phytase production and growth in solid-state fermentation by Aspergillus niger. Trans ASAE 44:1031–1036

    CAS  Google Scholar 

  30. Greiner R (2005) Current biochemical research on phytase genes in microorganisms and plants. Inositol Phosphates in the Soil Plant Animal System. Bouyoucos Conference, USA

    Google Scholar 

  31. Shieh TR, Wodzinski RJ, Ware JH (1969) Regulation of the formation of acid phosphatase by inorganic phosphate in Aspergillus ficuum. J Bacteriol 100:1161–1165

    CAS  Google Scholar 

  32. Pirt SJ (1965) The maintenance energy of bacteria in growing cultures. Proc R Soc London B 163:224–231

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michele Rigon Spier or Carlos Ricardo Soccol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spier, M.R., Woiciechowski, A.L., Letti, L.A.J. et al. Monitoring fermentation parameters during phytase production in column-type bioreactor using a new data acquisition system. Bioprocess Biosyst Eng 33, 1033–1041 (2010). https://doi.org/10.1007/s00449-010-0428-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-010-0428-4

Keywords

Navigation