Skip to main content
Log in

Chitooligosaccharides enzymatic production by Metarhizium anisopliae

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The products of chitosan hydrolysis are chitooligosaccharides and are used mainly for medical applications due to their specific biological activities. The objective of this study was to detect and identify the products of enzymatic hydrolysis of chitosan (dimers to hexamers) using a crude extract of chitosanolytic enzymes produced by the fungus Metarhizium anisopliae. These fungus was able to produce, during 48 h cultivation in a medium containing chitosan, chitooligosaccharides ranging from dimers, trimers, tetramers and pentamers at concentrations 0.2, 0.19, 0.06, 0.04 mg/mL, respectively, and the enzymatic activity was 2.5 U/L. Using the crude enzyme extract for chitosan hydrolysis, we detected the presence of dimers to hexamers at hydrolysis times of 10, 20, 30, 40, 50 and 60 min of enzymatic reaction, but the yields were higher at 10 min (54%). The hexamers was obtained only with 30 min of reaction with concentration of 0.004 mg/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Majeti NV, Kumar R (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27

    Article  Google Scholar 

  2. Lee H-W, Choi J-W, Han D-P, Lee N-W, Park S-L, Yi D-H (1996) Identification and production of constitutive chitosanase from Bacillus sp. HW-002. J Microbiol Biotechnol 6(1):12–18

    CAS  Google Scholar 

  3. Kumirska J, Weinhold MX, Sauvageau JCM, Thöming J, Kaczynski Z, Stepnowski P (2009) Determination of the pattern of acetylation of low-molecular-weight chitosan used in biomedical applications. J Pharm Biom Anal 50:587–590

    Article  CAS  Google Scholar 

  4. Chirkov SN (2002) The antiviral activity of chitosan (review). Appl Biochem Microbiol 38(1):1–8

    Article  CAS  Google Scholar 

  5. Shahidi F, Synowiecki J (1991) Isolation and characterization of nutrients and value-added products from snow crab (Chinoecetes opilio) and shrimp (Pandalus borealis) processing discards. J Agric Food Chem 39:1527–1532

    Article  CAS  Google Scholar 

  6. Agulló E, Rodriguez MS, Ramos V, Albertengo L (2003) Present and future role of chitin and chitosan in food. Macromol Biosci 3:521–530

    Article  CAS  Google Scholar 

  7. Peniche-Covas C, Alvarez LW, Arguelles-Monal W (1992) The adsorption of mercuric ions by chitosan. J Appl Polym Sci 46:1147–1150

    Article  CAS  Google Scholar 

  8. Nomanbhay SM, Palanisamy K (2005) Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal. J Biotechnol 8(1):43–53

    CAS  Google Scholar 

  9. Pelletier A, Sygusch J (1990) Purification and characterization of three chitosanase activities from Bacillus megaterium P1. Appl Environ Microbiol 56:844–848

    CAS  Google Scholar 

  10. Somoshekar D, Joseph R (1996) Chitosanases—properties and applications: a review. Bioresour Technol 55:35–55

    Article  Google Scholar 

  11. Zhou W, Yuan H, Wang J, Yao J (2008) Production, purification and characterization of chitosanase produced by Gongronella sp. JG. Lett Appl Microbiol 46:49–54

    CAS  Google Scholar 

  12. Price JS, Storck R (1975) Production, purification and characterization of an extracellular chitosanase from Streptomyces. J Bacteriol 124(3):1574–1585

    CAS  Google Scholar 

  13. Alfonos C, Martines M, Reyes F (1992) Purification and properties of two endochitosanase from Mucor rouxii implication on its cell wall degradation. FEMS Microbiol Lett 95:187–194

    Article  Google Scholar 

  14. Kim P, Kang T, Chung K, Kim I, Chung K (2004) Purification of a constitutive chitosanase produced by Bacillus sp. MET 1299 with cloning and expression of the gene. FEMS Microbiol Lett 240:31–39

    Article  CAS  Google Scholar 

  15. Valadares-Iglis MC, Peberdy JF (1997) Location of chitinolytic enzymes in protoplasts and whole cells of entomopathogenic fungus Metarhizium anisopliae. Mycol Res 101(11):1393–1396

    Article  Google Scholar 

  16. Rombach M, Humber RA, Evans HCC (1987) Metarhizium album, a fungal pathogen of leaf and planthoppers of rice. Trans Br Mycol Soc 88:451–459

    Article  Google Scholar 

  17. St Leger RJ, Cooper RM, Chamley AK (1986) Cuticle-degrading enzymes of entomopathogenic fungi: regulation of production of chitinolytic enzymes. J Gen Microbiol 132:1509–1517

    CAS  Google Scholar 

  18. Gupta SC, Leathers TD, El-Sayed GN, Ignoffo CM (1991) Production of degradative enzyme by Metarhizium anisopliae during growth on defined media and insect cuticle. Exp Mycol 15:310–315

    Article  CAS  Google Scholar 

  19. Kim S-K, Rajapakse N (2005) Enzymatic production and biological activities of chitosan oligosaccharides (COS): a review. Carbohydr Polym 62(4):357368

    Article  CAS  Google Scholar 

  20. Hirano S, Nagao N (1989) Effects of chitosan, pectic acid lysozyme and chitinase on the growth of several phytopathogens. Agric Biol Chem 53:3065–3066

    CAS  Google Scholar 

  21. Jeon YJ, Kim SK (2000) Production of chitooligosaccharides using ultrafiltration membrane reactor and their antibacterial activity. Carboydr Polym 41:133–141

    Article  CAS  Google Scholar 

  22. Jeon YJ, Kim SK (2000) Continuous production of chitooligosaccharides using a dual reactor system. Process Biochem 35:623–632

    Article  CAS  Google Scholar 

  23. Jeon YJ, Park PJ, Kim SK (2001) Antimicrobial effect of chitooligosaccharides produced by bioreactor. Carboydr Polym 44:71–76

    Article  CAS  Google Scholar 

  24. Jeon YJ, Kim SK (2002) Antitumor activity of chitosan oligosaccharides produced in ultra filtration membrane reactor system. J Microbiol Biotech 12:503–507

    CAS  Google Scholar 

  25. Nam MY, Shon YH, Kim SK, Kim CH, Nam KS (1999) Inhibitory effect of chitosan oligosaccharides on the growth of tumor cells. J Chitin Chitosan 4:184–185

    Google Scholar 

  26. Suzuki K, Mikami T, Okawa Y, Tokoro A, Suzuki S, Suzuki M (1986) Antitumor effect of hexa-N-acetylchitohexaose and chitohexaose. Carbohydr Res 151:403–408

    Article  CAS  Google Scholar 

  27. Yabuki M, Hirano M, Ando A, Fujii T, Amemiya Y (1987) Isolation and characterization of a chitosan degrading bacterium and formation of chitosananse by the isolate. Tech Bull Fac Hort Chiba Univ 39:23–27

    Google Scholar 

  28. Nahar P, Ghormade V, Deshpande MV (2004) The extracellular constitutive production of chitin deacetylase in Metarhizium anisopliae: possible edge to entomopathogenic fungi in the biological control of insect pests. J Inv Pathol 85:80–88

    Article  CAS  Google Scholar 

  29. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  30. Dou J, Tan C, Du Y, Bai X, Wang K, Ma X (2007) Effects of chitooligosaccharides on rabbit neutrophils in vitro. Carbohydr Polym 69(2):209–213

    Article  CAS  Google Scholar 

  31. Liang T-W, Chen Y-J, Yen Y-H, Wang S-L (2007) The antitumor activity of the hydrolysates of chitinous materials hydrolyzed by crude enzyme from Bacillus amyloliquefaciens V656. Process Biochem 42(4):527–534

    Article  CAS  Google Scholar 

  32. Chen X, Xia W, Yu X (2005) Purification and characterization of two types of chitosanase from Aspergillus sp. CJ22–326. Food Res Inter 38(3):315–322

    Article  CAS  Google Scholar 

  33. Gooday GW, Zhu W-Y, O’Donnel RW (1992) What are the roles of chitinases in the growing fungus? Lett Appl Microbiol 100:387–391

    CAS  Google Scholar 

  34. Choi YJ, Kim EJ, Piao Z, Yun YC, Shim YC (2004) Purification and characterization of chitosanase from Bacillus sp. Stran KCTC 0377BP and its application for the production of chitosan oligosaccharides. Appl Environ Microbiol 70(8):4522–4531

    Article  CAS  Google Scholar 

  35. Roncal T, Oviedo A, Armentia IL, Fernández L, Villarán (2007) High yield production of monomer-free chitosan oligosaccharides by pepsin catalyzed hydrolysis of a high deacetylation degree chitosan. Carboydr Res 342:2750–2756

    Article  CAS  Google Scholar 

  36. Sashiwa H, Fujishima S, Yamano N, Kawasaki N, Nakayama A, Muraki E, Sukwattanasinitt M, Pichyangkura R, Aiba S-I (2003) Enzymatic production of N-acetyl-d-glucosamine from chitin: degradation study of N-acetylchitooligosaccharide and the effect of mixing of crude enzymes. Carboydr Polym 51:391–395

    Article  CAS  Google Scholar 

  37. Shahidi F, Arachchi JKV, Jeon YJ (1999) Food applications of chitin and chitosans. Trends Food Sci Technol 10:37–51

    Article  CAS  Google Scholar 

  38. Kuroiwa T, Ichikawa S, Hiruta O, Sato S, Mukataka S (2002) Factors affecting the composition of oligosaccharides produced in chitosan hydrolysis using immobilized chitosanases. Biotechnol Prog 18:969–974

    Article  CAS  Google Scholar 

  39. Kuroiwa T, Sosaku I, Sato S, Mukataka S (2003) Improvement of yield of physiologically active oligosaccharides in continuous hydrolysis of chitosan using immobilized chitosanases. Biotechnol Bioeng 84(1):121–127

    Article  CAS  Google Scholar 

  40. Kuroiwa T, Noguchi Y, Nakajima M, Sato S, Mukataka S, Ichikawa S (2008) Production of chitosan oligosacchades using chitosanase immobilized on amylose-coated magnetic nanoparticles. Process Biochem 43:62–69

    Article  CAS  Google Scholar 

  41. Ming M, Kuroiwa T, Ichikawa S, Sato S, Mukataka S (2006) Production of chitosan oligosaccharides by chitosanase directly immobilized on an agar gel-coated multidisc impeller. Biochem Eng J 28(3):289–294

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Financiadora de Estudos e Projetos (FINEP), Conselho Nacional de Desenvolvimentos Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for support that made this work possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiane Fernandes de Assis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Assis, C.F., Araújo, N.K., Pagnoncelli, M.G.B. et al. Chitooligosaccharides enzymatic production by Metarhizium anisopliae . Bioprocess Biosyst Eng 33, 893–899 (2010). https://doi.org/10.1007/s00449-010-0412-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-010-0412-z

Keywords

Navigation